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Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting the elderly 

population worldwide. Brain inflammation plays a key role in the progression of AD. Deposition 

of senile plaques in the brain stimulates an inflammatory response with the overexpression of pro-

inflammatory mediators, such as the neuroinflammatory cytokine. interleukin-6. Curcumin has 

been revealed to be a potential agent for treating AD following different neuroprotective 

mechanisms, such as inhibition of aggregation and decrease in brain inflammation. We 

synthesized new curcumin derivatives with the aim of providing good anti-aggregation capacity 

but also improved anti-inflammatory activity. Nine curcumin derivatives were synthesized by 

etherification and esterification of the aromatic region. From these derivatives, compound 8 

exhibited an anti-inflammatory effect similar to curcumin, while compounds 3, 4, and 10 were 

more potent. Moreover, when the anti-aggregation activity is considered, compounds 3, 4, 5, 6, 

and 10 showed biological activity in vitro. Compound 4 exhibited a strong anti-aggregation effect 

higher than curcumin. Monofunctionalized curcumin derivatives showed better bioactivity than 
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difunctionalized compounds. Moreover, the presence of bulky groups in the chemical structure of 

curcumin derivatives decreased bioactivity.
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Introduction

Alzheimer's disease (AD) is the most common neurodegenerative condition, affecting more 

than 29 million people around the world, a number that is expected to triple by 2050. AD 

neuropathology is characterized by intraneuronal neurofibrillary tangles and extracellular 

senile plaques in the brain. Neurofibrillary tangles are composed of hyperphosphorylated tau 

proteins, while senile plaques originate from amyloid-β (Aβ) aggregation [1].

Inflammation is a complex biological response to a harmful stimuli or cell/tissue damage [2, 

3]. Chronic brain inflammation is a distinctive feature of AD in which the microglia, 

astrocytes, and, to a certain extent, neurons are thought to be strongly involved in the 

inflammatory process. Furthermore, the overexpression of pro-inflammatory mediators, such 

as tumor necrosis factor -α and interleukin (IL)-6, and acute proteins are evident in different 

regions of an AD brain [4]. A synergistic pattern between AD senile plaques and pro-

inflammatory cytokines increases the neurological damage to the brain [5, 6]. Thus, an 

increased deposition of Aβ proteins potentiate the production of pro-inflammatory 

cytokines, while these cytokines promote the formation of other constitutive proteins of the 

senile plaques.

The strong association between brain inflammation and AD pathology has stimulated 

research toward the discovery of new therapeutic agents that are likely to provide benefits to 

patients with AD. In this sense, the anti-inflammatory activity of natural products, which 

therefore decrease the impact of AD in patients, has been studied.

Curcumin (Fig. 1), a major polyphenol of the rhizome of Curcuma longa, is a potent anti-

inflammatory and neuroprotective natural product [1]. Studies in vitro have revealed that 

curcumin inhibits amyloid β-aggregation, the activities of the enzymes β-secretase and 

acetylcholinesterase, and Aβ-induced inflammation [7, 8]. In vivo, this polyphenol inhibits 

Aβ oligomerization, Aβ deposition, and tau phosphorylation in AD animalmodels [7, 8].

The anti-inflammatory activity of curcumin is mediated by modulation of several molecules 

involved in the inflammatory process.

In vitro, curcumin inhibits the production of pro-inflammatory cytokines, regulates the 

activity of inflammatory enzymes (COX-2, and the inducible nitric oxide synthase), and 

downregulates the expression of chemokines (MCP-1 and interferon-inducible protein) [9]. 

Meanwhile, in vivo experiments show it regulates the activation of transcription factors such 

as activating protein-1 and nuclear factor- κB [9]. The lack of toxicity of curcumin at high 
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concentrations makes it a potential nonsteroidal anti-inflammatory drug. Its low 

bioavailability, due to susceptibility to degradation in biological systems and poor solubility 

in water and plasma has, however, prevented the medical use of curcumin [11]. Although it 

is plausible that the anti-inflammatory activity of curcumin can be improved through 

chemical modification, there have been only few studies on the synthesis of curcumin 

analogs with this aim [10–13]. Thus, we sought to design and synthesize new anti-

inflammatory curcumin derivatives with a higher anti-inflammatory effect than curcumin 

and good capacity to inhibit Aβ aggregation.

Materials and Methods

Synthesis

Chemical reagents used were commercially available (Tedia, Applichem, Chem-Impex 

International, Sigma Aldrich, Oakwood Products, Lancaster Avocado, Alfa-Aesar, Fisher). 

All reactions were conducted with magnetic stirring under an argon atmosphere in oven-

dried flasks. Reactions were monitored until deemed complete by TLC using silica-gel-

coated glass plates (Merck Kiselgel 60 F254). Plates were visualized under UV light 

(254nm). Plates were dyed with 10% phosphomolybdic acid (PMA) in ethanol. 1H, and 13C 

NMR spectra were recorded at 500 (1H), and 125MHz (13C) on an Agilent Inova 500 

spectrometer; and at 400 (1H), 100MHz (13C) on Eclipse 400MHz spectrometer (JEOL, 

Peabody, MA, USA). Chemical shifts (δ) are reported in parts per million (ppm) using the 

residual solvent peak and coupling constants (J) are given in Hz. Proton multiplicity is 

reported as singlet (s), doublet (d), triplet (t), quartet (quart.), quintet (quint.), septet (sept), 

multiplet (m), and broad (br). Infrared spectrophotometry was carried out on a Platinum 

ATR Alpha instrument (Brucker, Billerica, MA, USA). The molar masses were determined 

with a micrOTOF-QIII spectrometer Bruker Daltonics, Billerica, MA, USA), with 

electrospray ionization (ESI) and positive ion detection mode. The detailed synthetic 

procedures and spectral characterization are described below.

General procedure (GP1) for the synthesis of alkyl succinates S1-S3

An oven-dried round bottom flask was charged with the given alcohol (14.7 mmol), 

dichloromethane (5 mL), and N, N-diisopropylethylamine (1.3 mL, 7.35 mmol, 0.5 equiv.) 

at room temperature (RT). After 2 h, succinic anhydride (735 mg, 7.35 mmol, 0.5 equiv.), 

and 4-dimethylaminopyridine (448 mg, 3.67 mmol, 0.25 equiv.) were added, and the 

reaction stirred at RT. After 48 h, the reaction mixture was diluted with brine/1 M HCl (3:1, 

10 mL). The aqueous layer was extracted with dichloromethane (3×10 mL). The combined 

organic phases were dried over anhydrous sodium sulfate (Na2SO4), filtered, and 

concentrated under reduced pressure. The crude material was washed with hexanes (3×20 

mL) to obtain the desired product.

Synthesis of 4-(allyloxy)-4-oxobutanoic acid (S1)—According to GP1, allyl alcohol 

(854 mg, 14.7 mmol) yielded S1 (790 mg, 40%).

Synthesis of 4-(benzyloxy)-4-oxobutanoic acid(S2)—According to GP1, benzyl 

alcohol (3 g, 27.7 mmol, 2.88 mL), pyridine (20 mL), 4-dimethy-laminopyridine (508 mg, 
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4.15 mmol, 0.15 equiv.), and succinic anhydride (1.3 g, 13.8 mmol, 0.5 equiv.) were 

combined, and the reaction was stirred for 6 h at 100C to yield S2 (3.74 g, 65%).

Synthesis of 4-(cyclopentyloxy)-4-oxobutanoic acid (S3)—According to GP1, 

cyclopentanol (949 mg, 11 mmol, 1 mL) and N,N-diisopropylethylamine (958 μL, 5.5 

mmol, 0.5 equiv.) were stirred in dichloromethane (5 mL) at RT. After 2 h, succinic 

anhydride (550 mg, 5.5 mmol, 0.5 equiv.) and 4-dimethylaminopyridine (672 mg, 5.5 mmol, 

0.5 equiv.) were added and the reaction stirred for 48 h at RT to yield S3 (1 g, 50 %).

General procedure (GP2) for the synthesis of dialkylcurcumin and monoalkylcurcumin 
(5-10)

An oven-dried round bottom flask, equipped with magnetic stirrer and 3 Å molecular sieves, 

was flushed with argon and charged with alkyl succinate (207 mg, 1.3 mmol, 10 equiv.), 

pyridine (3 mL), 4-dimethylaminopyridine (366 mg, 0.39 mmol, 3 equiv.), and 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (75 mg, 0.39 mmol, 3 equiv.). The 

reaction was stirred for 4 h at RT. Concurrently, a solution of curcumin (1) (50 mg, 0.13 

mmol) in pyridine (3 mL) was stirred for 4 h at RT. The curcumin solution was then added to 

the alkyl succinate reaction allowed to stir for 48 h at RT. The reaction mixture was diluted 

with a 0.5 M aqueous solution of Na2CO3/brine (1:1, 10 mL), and the aqueous layer 

extracted with ethyl acetate (EtOAc) (3×10 mL). The combined organic phases were dried 

over Na2SO4, filtered, concentrated under reduced pressure, and purified by preparative 

HPLC using normal phase silica gel column (Phenomenex, Sphereclone, 250×10mm, 5μm) 

with an n-hexane to ethyl acetate gradient system in 20 min at 2 mL/min to obtain the 

desired products.

Synthesis of diallyl O,O′-(((1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-
diyl)bis(2-methoxy-4,1-phenylene)) disuccinate (5), and allyl (4-((1E,4Z,6E)-5-
hydroxy-7-(4-hydroxy-3-methoxyphenyl)-3-oxohepta-1,4,6-trien-1-yl)-2-
methoxyphenyl) succinate (6)—According to GP2, S1 (207 mg, 0.67 mmol, 10 equiv), 

pyridine (3 mL), 4-dimethylaminopyridine (366 mg, 0.39 mmol, 3 equiv.), and 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (75 mg, 0.39 mmol, 3 equiv.) were 

combined and stirred at RT. Concurrently, a solution of curcumin (50 mg, 0.13 mmol) in 

pyridine (3 mL) was stirred at RT. After 4 h, the reactions were combined and allowed to stir 

for 48 h at RT. The crude product was purified by HPLC with diode array UV detection 

(DAD) to obtain 5 (19 mg, 22%) and 6 (27 mg, 39%).

Synthesis of dibenzyl O,O′-(((1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6triene-1,7-
diyl)bis(2-methoxy-4,1-phenylene)) disuccinate (7 ), and benzyl (4-((1E,4Z,
6E)-5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-3-oxohepta-1,4,6-trien-1-yl)-2-
methoxyphenyl) succinate (8)—According to GP2,S2 (64 mg, 1.3 mmol, 10 equiv.), 

pyridine (3 mL),4-dimethylaminopyridine (366 mg, 0.39 mmol,3 equiv.), and 1-ethyl-3-(3-

dimethylaminopro-pyl)carbodiimide hydrochloride (75 mg, 0.39 mmol, 3 equiv.) were 

stirred at RT. Concurrently, a solution of curcumin (50 mg, 0.13 mmol) in pyridine (3 mL) 

was stirred at RT. After 4 h, the solutions were combined and allowed to stir for 48 h at RT. 
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The crude product was purified by HPLC-DAD to obtain 7 (21 mg, 21%) and 8 (28 mg, 

37%).

Synthesis of dicyclopentyl O,O′-(((1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-
triene-1,7-diyl)bis(2-methoxy-4,1-phenylene)) disuccinate (9), and cyclopentyl 
(4-((1E,4Z,6E)-5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-3-oxohepta-1,4,6-
trien-1-yl)-2-methoxyphenyl) succinate (10)—According to GP2,S3 (245 mg, 1.3 

mmol, 10 equiv.), pyridine (3 mL),4-dimethylaminopyridine (366 mg, 0.39 mmol, 3equiv.), 

and 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide hydrochloride (75 mg, 0.39 mmol, 3 

equiv.) was stirred at RT. Concurrently, a solution of curcumin (50 mg, 0.13 mmol) in 

pyridine (3 mL) was stirred at RT. After 4 h, the solutions were combined and allowed to stir 

for 48 h at RT. The crude product was purified by HPLC-DAD to obtain 9 (17 mg, 18%) and 

10 (25 mg, 34%).

General procedure (GP3) for the synthesis of etherification and estherification of curcumin 
(2–4)

An oven dried round bottom flask equipped with magnetic stirrer and 3 Å molecular sieves 

was flushed with argon and charged with curcumin (200 mg, 0.54 mmol), solvent (6 mL), 

base (150 mg, 1.08 mmol, 2 equiv.), and alkyl halide (300 μL, 2.7 mmol, 5 equiv.). The 

reaction was stirred for 48 h at RT. The reaction mixture was diluted with water and 

extracted with EtOAc (3×10 mL). The combined organic phases were dried over Na2SO4, 

filtered, and concentrated under reduced pressure. The crude product was washed with n-

hexane (3×20 mL) to obtain the desired product.

Synthesis of (1E,6E)-1,7-bis(3-methoxy-4-(prop-2-yn-1-yloxy)phenyl)hepta-1,6-
diene-3,5-dione (2)—According to GP3, curcumin (200 mg, 0.54 mmol), N,N-

dimethylformamide (6 mL), K2CO3 (150 mg, 1.08 mmol, 2 equiv.), and propargyl bromide 

(300 μL, 2.7 mmol, 5 equiv.) were stirred for 48 h at RT. The reaction mixture was diluted 

with water (10 mL) and extracted with EtOAc (3 ×10 mL). The combined organic phases 

were dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude 

product was washed with n-hexane (3×20 mL) to yield 2 (168 mg, 70%).

Synthesis of (1E, 4Z, 6E)-1-(4-(benzyloxy)-3-methoxyphenyl)-5-hydroxy-7-(4-
hydroxy-3-metho-xyphenyl)hepta-1,4,6-trien-3-one (3)—According to GP3, 

curcumin (100 mg, 0.27 mmol), acetone (5 mL), Cs2CO3 (88 mg, 0.27 mmol, 1 equiv.), and 

benzyl bromide (1 mL, 8.1 mmol, 30 equiv.) were stirred at 56°C for 24 h. The reaction 

mixture was diluted with water (20 mL) and extracted with EtOAc (3×10 mL). The 

combined organic phases were dried over Na2SO4, filtered, and concentrated under reduced 

pressure. The crude product was purified by column chromatography [n-hexane/EtOAc, 

silica gel] to obtain 3(98 mg, 80%).

Synthesis of 4-((1E,4Z,6E)-5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-3-
oxohepta-1,4,6-trien-1-yl)-2-methoxyphenyl acetate (4)—According to GP3, 

curcumin (100 mg, 0.27 mmol) and K2CO3 (38 mg, 0.27 mmol, 1 equiv.) in 

dichloromethane (10 mL) were stirred at RT. After 8 h, a solution of acetyl chloride (96μL, 
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1.35 mmol, 5 equiv.) in dichloromethane (5 mL) was sonicated for 5 min and added to the 

curcumin solution. The reaction was stirred for 24 h at RT followed by column 

chromatography [n-hexane/EtOAc, silica gel] to obtain 4 (79 mg, 71%).

A complete detail of the methods used for synthesis and for the characterization of the 

synthesized compounds can be found in the Supplementary material.

Mice

Female C57Bl/6 mice, 8 weeks of age, were provided by INDICASAT's animal facility. 

Animals were maintained in 12 h light/dark cycle at a constant temperature of 24°C with 

free access to food and water. Experimental procedures were performed following the 

ethical guidelines related to the handling of lab animals in accordance with international and 

institutional regulations. The Institutional Animal Care and Use Committee of INDICASAT 

approved the protocol (IACUC-15-004).

Cell culture and cytokine determination

To determine the anti-inflammatory capacity of compounds (1–6, 8, 10), elicited peritoneal 

macrophages from C57Bl/6 mice were obtained by peritoneal washing with chilled RPMI 

after 5 days of i.p. instillation of 2 mL of 3% thioglycollate. Cells were seeded in RPMI with 

10% FCS at 2×105 cells/well in 96-well plates and incubated at 37°C in a 5% CO2 

atmosphere. Cells were stimulated with LPS (10 ng/mL) in the presence or absence of 

different concentrations of compounds (1, 3, 10, and 30μM). All the treatments and controls 

were performed in the presence of 0.5% DMSO, the vehicle for test compounds. 

Supernatants were collected 18 h after stimulation with LPS, and the concentrations of IL-6 

were determined by ELISA. Concentrations of cytokine were measured following the 

manufacturer's protocol (DuoSet kit, R&D System).

Cytotoxicity assay

To determine the cytotoxicity of the compounds tested (1–6, 8, 10), 100μL of MTT at a 

concentration of 0.5 mg/mL in RPMI was added to each well after removing the supernatant 

and were incubated for 2 h at 37°C in 5% CO2. MTT (soluble tetrazolium salt) is reduced to 

formazan (insoluble) by the activity of succinate dehydrogenase of living cells' 

mitochondria. The supernatants were removed, and the formazan crystals were dissolved in 

100μL of 0.04 M HCl in isopropanol. The color was analyzed at 570 nm using a plate 

reader. The percentage of viable cells was calculated as % viability=(OD sample/OD 

control)× 100%. Non-stimulated cells cultured in media represent 100% viability.

Thioflavin T assay

The aggregation of Aβ42 was evaluated by the thioflavin T assay. The rAβ42 (rPeptide) was 

resuspended according to the manufacturer's instruction in 1% NH4OH, at a concentration of 

1 mg/ml after 1 min of hydration. rAβ42 (10μM) was combined with or without different 

concentrations (1, 3, 10, and 30μM) of compounds, and 200μL of the mix was plated in a 

96-well black plate. For this assay, curcumin (5μM) was used as inhibition control. All of the 

reactions were performed in the presence of 0.1% of DMSO of the vehicle for the 

compounds. The plate was incubated at 37C for 48 h. After incubation, 20μM of thioflavin T 
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was added and the fluorescence was measured in a Synergy HT multi-reader from Biotek 

(Winooski, VT), excitation 450 nm, emission 485 nm. Fluorescence values were determined 

by subtracting the baseline fluorescence of thioflavin T.

Statistical analysis

Data were analyzed by using the statistical software package GraphPad Prism5. Statistical 

analysis was performed with the unpaired t test. A significant difference between groups was 

considered to be when p<0.05. The half maximal inhibitory concentration (IC50) was 

calculated by adjusting a sigmoidal dose-response curve following the procedure in 

GraphPad Prism5.

Results

Curcumin derivatives

In this study, seven novel curcumin derivatives (3, 5, 6, 7, 8, 10) were synthesized. 

Moreover, two known compounds (2, 4) were also synthesized with the purpose of 

establishing a structure-activity relationship (SAR).

Compounds 2-3 were synthesized by etherification reactions, while compounds 4–10 were 

formed by esterification (Fig. 2). The reaction between curcumin and propargyl bromide in 

the presence of K2CO3 and DMF afforded 2 in 70% yield. Curcumin and benzyl bromide 

reacted in the presence of Cs2CO3 and DMF to afford 3 in 80% yield. The reaction between 

curcumin and acetyl chloride in the presence of K2CO3 and acetone produced 4 in 71% 

yield (Fig. 2).

The reaction between curcumin and 4-(allyloxy)-4-oxobutanoic acid in the presence of EDC, 

DMAP, and pyridine produced difunctionalized (5, 22%), and monofunctionalized (6, 39%) 

succinate analogs (Fig. 2). On the other hand, when curcumin reacted with 4-(benzyloxy)-4-

oxobutanoic acid in the presence of EDC, DMAP, and pyridine, difunctionalized ester 7 and 

monofunctionalized ester 8 derivatives were produced in 21% and 37% yield, respectively. 

Finally, when curcumin reacted with 4-(cyclopentyloxy)-4-oxobutanoic acid in the presence 

of EDC, DMAP, and pyridine, esterified analogs 9 and 10 were produced in 18% and 34% 

yield, respectively.

Anti-inflammatory activity of curcumin derivatives

To evaluate the anti-inflammatory activity of the curcumin analogs and curcumin, we 

measured the secretion of IL-6 by murine macrophages stimulated with LPS in the presence 

or absence of the compounds. Compounds 2–6, 8, and 10 reduced macrophage response, 

while compounds 7 and 9 did not show any anti-inflammatory activity. Compounds 2–4 
completely suppressed the production of IL-6 at 10μM (Fig. 3a). This inhibition was not due 

to a cytotoxic effect of the compounds, since cell viability was not affected at the evaluated 

concentrations (Fig. 3b). Compounds 5, 6, 8, and 10 showed mid-to-strong inhibition of IL-6 

production (Fig. 3c), with a complete inhibition of IL-6 at 30μM. Compounds 6, 8, and 10 
did not affect the cell viability at the concentrations tested (Fig. 3d). Compound 5 exhibited 
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cytotoxicity at a concentration of 30μM. The IC50 values for curcumin and its analogs are 

shown in Table 1.

Curcumin derivatives decrease Aβ aggregation

To evaluate the effect of curcumin derivatives on Aβ aggregation, Aβ1 - 42 was incubated for 

48 h in the presence or absence of compounds. Fibrils of Aβ were detected by a thioflavin T 

assay. Compounds 3, 4, 5, 6, and 10 inhibited the aggregation of Aβ in a concentration-

dependent manner (Fig. 4) with IC50 values ranging from 1.32±0.7μM to 2.05±0.1μM (Table 

1). These compounds showed a similar effect on amyloid aggregation as compared to 

curcumin (1) (IC50=1.4±0.9). Compounds 2, 8, and 9 did not present anti-aggregation 

activity.

Discussion

New curcumin derivatives were prepared by etherification and esterification in order to 

provide structural changes that could potentially increase anti-inflammatory activity. 

Inhibition of the secretion of pro-inflammatory cytokines, such as IL-6, is frequently used as 

readout of an anti-inflammatory activity. We evaluated the effect of curcumin derivatives on 

the production of IL-6 by macrophages stimulated with LPS. Assessment of the bioactivity 

in vitro showed that compounds 2–6, 8, and 10 decreased the secretion of IL-6, depending 

on the chemical modification. Compounds 2–4 down regulated the production of IL-6 in a 

concentration-dependent manner, with a negligible release at 10μM. A structure-activity 

relationship of curcumin derivatives was investigated by introducing changes on the 

hydroxyl groups located on the aromatic rings and evaluating the anti-inflammatory activity. 

Curcumin modified with small groups by etherification of the hydroxyl groups on both 

aromatic rings (2) showed a much higher anti-inflammatory activity than did unmodified 

curcumin (2.23±0.84 versus 8.25±1.25) (Table 1). Furthermore, introduction of a benzene 

ring etherified at one of the curcumin rings led to a curcumin derivative with the most potent 

anti-inflammatory activity (3). Acetylation at only one side of the molecule resulted in 

strong biological activity. However, when the complexity and length of the groups attached 

to both rings increased, a reduced (5), or null biological activity (7, 9), occurred as compared 

to curcumin. Indeed, a strong improvement on the activity was achieved when modifications 

were done at only one of the aromatic rings (6, 8, 10). When monofunctionalized diester 

curcumin derivatives are considered (6, 8, 10), it was observed that the improvement of the 

anti-inflammatory activity was reduced by the presence of bulky groups in the molecule. 

These bulky groups may disturb the molecular mechanisms by which these derivatives 

inhibit the production of IL-6 in a fashion that needs further investigation.

Based on the results obtained from the anti-inflammatory activity of curcumin and its 

analogues, it can be concluded that hydroxyl groups on the aromatic rings of the curcumin 

are pharmacophores, required for reducing the production of IL-6. Moreover, modifications 

on curcumin to produce new analogs with potential anti-inflammatory activity by inhibition 

of IL-6 should take into account the following salient points (1) that at least one hydroxyl 

group of the aromatic rings should not be modified, and (2) etherification and esterification 

Lakey-Beitia et al. Page 8

J Alzheimers Dis. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of only one of the hydroxyl groups present in the benzene rings will strongly enhance the 

activity depending on the complexity of the substituent added.

At the molecular level, AD is characterized by the presence of extracellular Aβ senile 

plaques in the brain [1, 5]. Senile plaques are produced by the cleavage of the amyloid-β 
protein precursor (AβPP) by the enzyme β-secretase at the AβPP beta site, leading to a 

small soluble AβPPβ fragment and a C-99 fragment of AβPP. The C-99 fragment is then 

broken by the enzyme γ-secretase into two fragments of AβPP intracellular domain protein 

and the pathological Aβ42 peptide, which polymerizes forming amyloid fibrils, leading to 

cell death in the brain [1].

The effect of curcumin on Aβ aggregation has been extensively studied [14, 15]. This effect 

appears to be favoring the generation of non-toxic Aβ intermediates during the formation of 

fibrils [16]. It has also been proposed that curcumin disaggregates Aβ fibrils [17]. 

Compounds 3, 4, 5, 6 and 10 presented anti-aggregation activity in vitro (Table 1). SAR 

evaluation indicates that curcumin derivatives etherified with small groups at both sides of 

the molecule lose the anti-aggregation activity (2). Nevertheless, etherification at only one 

side of curcumin maintains the bioactivity, yet is lower than curcumin (3). Acetylation at 

only one side of the molecule led to an analog with a larger biological activity (4). 

Monofuctionalized diester analogs (6, 8, 10) showed a decreased or null bioactivity 

compared to curcumin. This decrease in the anti-aggregation activity is associated with the 

complexity and length of the analog. The presence of bulky groups in monofuctionalized 

diester derivatives impacted negatively the activity. When bifunctional diester is taken into 

account (5), a reduced biological activity was also observed. It has been suggested that 

phenolic compounds, such as curcumin, are able to produce anti-aggregation activity due to 

π - π interactions and the formation of hydrogen bonds between the peptide and the 

phenolic rings [18]. These anti-aggregation mechanisms might be also followed by 

compounds 3, 4, 5, 6, and 10, yet the exact mechanism needs to be studied. Since we 

measured the anti-aggregation activity of the compounds in a time period of 48 h, we cannot 

rule out the possibility that these curcumin derivatives might have disaggregation potential. 

Kinetics studies are necessary to evaluate a potential disaggregate effect of these new 

curcumin derivatives.

Inhibition of Aβ aggregation is a promising approach for the identification of new agents for 

AD treatment. Several synthetic and natural compounds have been tested as inhibitors for 

Aβ aggregation [1]. Some molecules have reached different phases of clinical trials; 

however, until now, no molecule has been approved as new therapeutic. Hence, the search of 

new molecules with anti-aggregation effect continues to be of great interest.

Our findings suggest that the novel curcumin derivatives 3, 4, 6, and 10 have potential as 

therapeutic compounds for the treatment of AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig.1. 
Curcumin and its major reactive sites.
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Fig.2. 
Synthesis of curcumin derivatives with ether, ester, and diesther groups. Reagents and 

conditions: a) CHCCH2Br, K2CO3, DMF, RT, 48 h, 70%. b) C6H5CH2Br, Cs2CO3, 

CH3COCH3, 56C, 24 h, 80%. c) CH3COCl, K2CO3, CH2Cl2, RT, 24 h, 71%. d) S1, DMAP, 

EDC, pyridine, RT, 48 h, 22% (5), and 39% (6). e) S2, DMAP, EDC, pyridine, RT, 48 h, 

21% (7), and 37% (8). f) S3, DMAP, EDC, pyridine, RT, 48 h, 18% (9), and 34% (10).
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Fig.3. 
Anti-inflammatory activity of curcumin derivatives with ether, ester, and diester groups. 

Peritoneal macrophages from C57BI/6 mice were treated with different concentrations (1, 3, 

10, or 30μM) of the evaluated compounds 1 h before the stimulus with 10 ng/mL of LPS. 

After 24 h, concentration of IL-6 was determined by the ELISA method in the supernatant 

of cells treated with curcumin derivatives with ether and ester groups (a) or with diester 

groups (c). Cells viability was assessed by the MTT assay after supernatant collection (b and 

d). All results are represented as Mean±S.E.M from three independent experiments 

performed in duplicate. *p<0.05 relative to the LPS stimulus alone. C, negative control.

Lakey-Beitia et al. Page 14

J Alzheimers Dis. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig.4. 
Effect of curcumin derivatives with ether, ester, and diester groups on Aβ aggregation. Aβ42 

recombinant peptide was incubated during 48 h with or without different concentrations (1, 

3, 10, or 30μM) of compounds. After incubation, ThT (20μM) was added and was 

determined.changes in its fluorescence intensity (ΔThT fluorescence) in the presence of 

curcumin derivatives with ether and ester groups (a) or with diester groups (b). Results are 

represented as Mean±S.D. from three independent experiments performed in duplicate. 

*p<0.05 relative to Aβ42 alone.
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Table 1
Chemical structures and anti-inflammatory and anti-amyloid aggregation activity of 
synthetic curcumin derivatives

Compound Structure aIC50±S.D (μM) bThT assay IC50 (μM)

2 2.23±0.84 NA

3 1.81±1.31 2.05±0.1

4 2.21±0.93 1.32±0.7

5 14.2±12.8 1.96±0.7

6 2.50±0.92 1.77±0.9

8 8.28±3.08 NA

10 3.22±1.34 2.04±0.7

1 8.25±1.25 1.49±0.9

a,b
Values represent average of IC50 from three independent experiments performed in duplicate±S.D.
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