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Abstract

Alpha-synuclein (α-Syn) overexpression and misfolding/aggregation in degenerating 

dopaminergic neurons have long been implicated in Parkinson’s disease (PD). The neurotoxicity 

of α-Syn is enhanced by iron (Fe) and other pro-oxidant metals, leading to generation of reactive 

oxygen species in PD brain. Although α-Syn is predominantly localized in presynaptic nerve 

terminals, a small fraction exists in neuronal nuclei. However, the functional and/or pathological 

role of nuclear α-Syn is unclear. Following up on our earlier report that α-Syn directly binds DNA 

in vitro, here we confirm the nuclear localization and chromatin association of α-Syn in neurons 

using proximity ligation and chromatin immunoprecipitation analysis. Moderate (~2-fold) increase 

in α-Syn expression in neural lineage progenitor cells (NPC) derived from induced pluripotent 

human stem cells (iPSCs) or differentiated SHSY-5Y cells caused DNA strand breaks in the 

nuclear genome, which was further enhanced synergistically by Fe salts. Furthermore, α-Syn 

required nuclear localization for inducing genome damage as revealed by the effect of nucleus 

versus cytosol-specific mutants. Enhanced DNA damage by oxidized and misfolded/oligomeric α-

Syn suggests that DNA nicking activity is mediated by the chemical nuclease activity of an 

oxidized peptide segment in the misfolded α-Syn. Consistent with this finding, a marked increase 

in Fe-dependent DNA breaks was observed in NPCs from a PD patient-derived iPSC line 

harboring triplication of the SNCA gene. Finally, α-Syn combined with Fe significantly promoted 

neuronal cell death. Together, these findings provide a novel molecular insight into the direct role 
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of α-Syn in inducing neuronal genome damage, which could possibly contribute to 

neurodegeneration in PD.
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INTRODUCTION

Alpha-synuclein (α-Syn) is a 140 amino acid-containing, intrinsically disordered protein 

found to be differentially expressed with age and subtypes of neurons in vertebrates [1, 2]. 

Missense mutations and triplication of α-Syn encoding SNCA gene have been linked to 

neurodegeneration in Parkinson’s disease (PD) and related disorders [3–5]. The factors 

triggering α-Syn mediated neurotoxicity in sporadic PD cases are still vague; however, 

multiple lines of evidence link pro-oxidant metal dyshomeostasis in affected brain regions 

and oxidative stress to α-Syn aggregation [6–8]. The interaction of α-Syn with iron (Fe) or 

copper (Cu) not only affects its folding properties but also its interaction with other 

macromolecules, including membrane lipids, and cellular localization [9–11]. Furthermore, 

α-Syn has been shown to oxidize both in vitro and in cell under PD conditions [12, 13]. 

While the biological implications of these modifications have not been investigated, 

oxidation seems to promote α-Syn misfolding in vitro [14, 15].

α-Syn is localized predominantly in the neuronal cytosol and is membrane-bound in 

presynaptic nerve terminals, although several studies identified a small fraction of the 

protein in other cellular compartments, including the mitochondria and the nucleus [16–22]. 

Although there are discrepancies in the literature about the presence of α-Syn in the nuclei 

of healthy neurons, presumably due to varying sensitivity of the detection methods 

employed, there is more consistent evidence supporting its nuclear localization in PD-

affected neurons [23–25]. While the relative abundance of α-Syn in the nucleus versus 

cytoplasm in various cell types has not been thoroughly investigated, it appears that about 5–

10% of α-Syn localizes to the nucleus in cultured neurons. Nonetheless, the precise role of 

nuclear α-Syn in normal or PD-affected neurons is not known. We previously showed that 

recombinant α-Syn binds naked DNA in vitro, resulting in conformational changes in DNA 

and protein [26, 27]. Subsequent studies from other laboratories not only confirm this 

observation but also demonstrate its association with histone H3 in neuroblastoma cells, 

suggesting its possible role in chromatin [23]. Interestingly, a recent study shows that α-Syn 

selectively binds to promoter regions of several genes in oxidatively stressed cells, 

suggesting its involvement in transcriptional regulation [21]. We previously showed affinity 

of α-Syn for guaninecytosine-rich DNA sequences, a scenario consistent with its proposed 

promoter activity [28].

One major feature of PD pathology is the accumulation of various types of genome damage 

in affected neurons [29]. Interestingly, the level of DNA damage accumulation in PD-

affected brain regions seems to broadly correlate with disease severity, which is linked to α-

Syn pathology and metal accumulation/oxidative stress [29–31]. However, a direct link 
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between α-Syn toxicity and genome damage has not been investigated. Here, we tested the 

hypothesis that nuclear α-Syn together with transition metals contribute to neuronal genome 

damage in PD. Using multiple in vitro neuronal models, including neurons from normal and 

PD patient-derived induced pluripotent stem cells (iPSCs) and α-Syn inducible 

neuroblastoma line, we demonstrate here for the first time that α-Syn not only associates 

with chromatin but it also induces DNA breaks in chromatin upon oxidation, leading to 

neuronal apoptosis. Furthermore, the DNA damage accumulation is dependent on 

chromatin-bound α-Syn in the neuronal nuclei, consistent with its DNA nicking activity in 
vitro, both of which are facilitated by pro-oxidant Fe and α-Syn misfolding. This novel 

observation reveals a direct role of α-Syn in causing genome damage and neuronal death in 

PD.

MATERIALS AND METHODS

Plasmid constructs

pcDNA-NES-α-Syn and pcDNA-NLS-α-Syn plasmids containing additional nuclear 

localization signal (NLS) or nuclear export signal (NES) sequences were a kind gift from Dr. 

Mel B. Feany (Harvard Medical School) [23]. Inducible mammalian FLAG-α-Syn 

expression vector was generated by cloning blunt-ended full-length α-Syn amplified from 

pcDNA-WT-α-Syn plasmid using Deep Vent DNA polymerase (M0258, NEB) into pCW-

Cas9 vector (gift from Eric Lander and David Sabatini, Addgene plasmid 50661) [32] and 

digested with restriction enzymes NheI (R0131, NEB) and BamHI (R0136, NEB) followed 

by DNA polymerase I, large (Klenow; M0210, NEB) treatment to generate blunt ends. The 

primers used to amplify C-terminal FLAG-tagged α-Syn were as follows: forward primer, 

5’-ATG GAT GTA TTC ATG AAA GGA CT-3’; reverse primer, 5’–CAC TGT CGA CTT 

ACT TAT CGT CAT CGT CTT TGT AAT CGG CTT CAG GTT CGT AGT CTT GAT 

ACC-3’.

Cell culture and treatments

The human neuroblastoma SHSY-5Y line was routinely maintained in regular Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS; 

Gibco) and 1% penicillin/streptomycin (Corning). Transfection of SHSY-5Y cells with 

pcDNA-NES-α-Syn, pcDNANLS-α-Syn, and pCW-FLAG-α-Syn plasmids was carried out 

using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. NLS- 

and NES-tagged α-Syn plasmid-transfected cells were selected with antibiotic G418 

sulphate (Corning), and doxycycline (Dox)-inducible α-Syn-expressing cells were selected 

against the antibiotic puromycin (InvivoGen) with a dose of 10 μg/mL.

Dox (5 μg/mL for 0, 24, 48, or 72 h)-inducible (i) FLAG-α-Syn levels were optimized for 2–

3-fold overexpression. The cells were treated with FeSO4 (200 μM) or CuSO4 (200 μM) in 

DMEM supplemented with 1% FBS media for 24 h.

Human iPSC culture and generation of neural progenitor cells (NPC)

A control iPSC line KYOU-DXR0109B (201B7) was obtained from ATCC and grown in 

CellMatrix basement membrane gel (ACS-3035) and Pluripo-tent Stem Cell SFM XF/FF 
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media (ACS-3002) at 37°C and 5% CO2. The iPSC line (ND34391*H) with α-Syn SNCA 
gene triplication (SNCA-tri) was obtained from the CORIELL Institute cell repository. 

SNCA-tri iPSCs were initially grown in 0.1% gelatin-coated 6-well plates covered with γ-

irradiated CF-1 mouse embryonic fibroblasts and DMEM/F12 20% knock-out serum 

replacement (Gibco 11330–032, 10828010). At passage 3, SNCA-tri iPSCs were 

transitioned into a feeder-free system and maintained in a CellMatrix-coated dish and 

Essential 8 medium (E8M; Gibco A1517001). Derivation of NPCs from both control and 

SNCA-tri iPSCs was done using PSC neural induction medium (Gibco A1647801) as per 

the manufacturer’s protocol. Briefly, E8M was replaced with neural induction medium 

approximately 24 h after passaging iPSCs, which were maintained in this medium for 7 

days. Then the NPCs (P0) were passaged onto Geltrex (Thermo Fisher)-coated 6-well plates 

and expanded in StemPRO neural stem cell SFM media (A1050901). Neural induction 

efficiency was determined at passage 3 by immunofluorescence staining with a pluripotent 

marker (Oct4) and neural lineage stem cell marker (Nestin).

Real Time-PCR analysis for α-Syn mRNA quantitation

Total RNA was isolated using RNeasy Mini Kit (Qiagen #74104) following the 

manufacturer’s protocol. Two microgram RNA was used for cDNA synthesis in a 20 μL 

reaction using SuperScript III reverse transcriptase kit (Invitrogen, #18080–044). α-Syn 

expression in the samples were analyzed by SYBR GREEN-based Real Time PCR (7000 

Real-Time PCR System; Applied Biosystems) using SYBR Premix Ex Taq (TaKaRa) and 

primers appropriate for α-Syn expression described in [33] (HaSynTfw 5’-AGG GTG TTC 

TCT ATG TAG G-3’ HaSynTrv 5’-ACT GTC TTC TGG GCT ACT GC) and HPRT1 

expression (internal control; primer sequences: RealTimePrimers.com). Data were 

represented as fold change mRNA expression with respect to the reference samples set at 1 

based on 2–ΔΔCT method.

Electrophoresis and immunoblotting

Whole cell protein extracts were obtained by harvesting the cells in ice-cold phosphate-

buffered saline (PBS) and lysing them with STEN lysis buffer (50 mM Tris-HCl (pH 7.6), 

150 mM NaCl, 0.1% SDS, 1% Nonidet P-40, 2 mM EDTA, and protease inhibitor) on ice 

for 20 min. Cytoplasmic and nuclear fraction protein were obtained by first lysing the 

harvested cells in cytoplasmic buffer (10 mM Tris-HCl (pH 7.9), 0.34 M sucrose, 3.0 mM 

CaCl2, 2.0 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 0.1% Nonidet P-40, and protease 

inhibitor) on ice for 10 min followed by centrifugation at 3500 g for 15 min at 4°C. 

Supernatant was collected as the cytoplasmic fraction, and the pellet was lysed with nuclear 

lysis buffer (20 mM HEPES (pH 7.9),3.0 mM EDTA, 10% glycerol, 150 mM potassium 

acetate, 1.5 mM MgCl2, 1 mM DTT, and 0.5% Nonidet P-40), vortexed for 15 min at 4°C, 

and centrifuged at 16000 g for 10 min at 4°C. Protein content was estimated using the 

Bradford method (Bio-Rad).

Gel electrophoresis was performed as described previously [34, 35]. Protein samples were 

prepared for electrophoresis by dilution with their corresponding lysis buffers and addition 

of 4 × NuPAGE LDS samples; samples were not subjected to boiling. If not stated 

otherwise, 30 μg protein was loaded per lane in NuPAGE 4–12% Bis-Tris gel and 
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electrophoresed with NuPAGE MES-SDS running buffer. Gels were then electroblotted onto 

Immobilon-PSQ 0.45-μm PVDF membranes (Millipore) for 3 h at 30 V constant current at 

4°C in 1 × Tris-Glycine solution (Fisher Scientific) and 20% methanol transfer buffer. After 

transfer, membranes were fixed with 0.4% paraformaldehyde (PFA) in PBS for 30 min at 

room temperature (RT), followed by blocking in 5% skim milk in TBS-T. The membranes 

were incubated with primary antibody diluted in 1% skim milk in TBST for 1 h at RT or 

overnight at 4°C, followed by washing in 1 × TBS-T and then incubation with secondary 

antibody for 1 h at RT and development with SuperSignal West Pico Chemiluminescent 

Substrate (Thermo Fisher).

Proximity ligation assay (PLA)

About 20,000 cells were seeded per well in 8-well chamber slides (Millipore) and grown for 

2 days with Dox (5 μg/mL) induction. After the indicated treatment, the cells were fixed 

with 4% PFA for 15 min in the dark at RT, permeabilized in 0.2% Triton X-100 (Sigma) in 

1× PBS for 10 min at RT, washed with PBS, blocked with 100 mM glycine, and washed 

again with PBS. The in situ PLA experiment was performed using the DuoLink kit (Olink 

Biosciences, Uppsala, Sweden) following the manufacturer’s instructions. The following 

primary antibodies were used at the specified dilutions: mouse anti-FLAG at 1:1000; rabbit 

anti-α-Syn at 1:200, and rabbit anti-histone 3 at 1:200 dilution. The nuclear background of 

cells was visualized by staining with 4’,6-diamidino-2-phenylindole (DAPI; Agilent 

Technologies). After staining, cells were examined with a Zeiss Axio Observer 7 

microscope.

Chromatin immunoprecipitation (ChIP) assay

ChIP analysis was performed following the procedure described previously [36–38]. Briefly, 

cells in 10-cm plates were washed with PBS, cross-linked with 1% formaldehyde, lysed, and 

sonicated (XL-2000; QSonica LLC). IP was then performed in the cleared lysate with 5 μg 

of FLAG antibody (Sigma, for FLAG-α-Syn) or control IgG (Santa Cruz Biotechnology, 

Inc.) and Magna ChIP Protein A magnetic beads (Millipore, catalog no. 16–661) overnight. 

After washing the IP beads, protein-DNA complexes were eluted and the cross-links were 

reversed. DNA was purified using standard phenol/chloroform extraction and finally 

dissolved in 10 mM Tris-HCl (pH 8). The ChIP and 1% of the input DNA were subjected to 

SYBR Green-based real-time PCR (7500 Real-Time PCR System; Applied Biosystems) 

with appropriate primers (Supplementary Table S1) and SYBR Premix Ex Taq (TaKaRa). 

ChIP data were calculated as percent input.

Biotin affinity co-elution

For affinity co-elution assay, a 50-bp, 5’-biotin-tagged oligo and its complementary oligo 

were purchased from Sigma. The oligos were annealed by gradual cooling in a boiling water 

bath to generate a duplex oligo. Biotinylated dsOligo at a final concentration of 10 μM was 

mixed with 1 μg recombinant α-Syn (rPeptide) or 1 μg whole cell extract from SHSY-5Y 

cells ectopically expressing α-Syn or 1 μg purified BSA as a negative control in PBS and 

incubated at 30°C for 15 min with gentle shaking. The affinity pull-down was performed 

with Streptavidin-coupled Dynabeads™ M-280 (Thermo Scientific) following the 

manufacturer’s protocol. The eluted protein product was tested by immunoblotting.
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Oxidation of α-Syn by singlet oxygen

Singlet oxygen (1O2) was generated by irradiating riboflavin (Sigma R9504) solution (1% 

PBS) with UVB (UVP UVLMS-38). Recombinant α-Syn (2 μg) was added to the irradiated 

solution and incubated for 1 h followed by addition of supercoiled (sc) plasmid DNA for 4 h. 

To test oxidized α-Syn-mediated DNA strand breaks in cell, UVB-irradiated riboflavin 

solution containing recombinant α-Syn was added to the cell culture media for 4 h followed 

by DNA strand break analysis by Comet assay.

Comet assay

Alkaline Comet assay was performed using Trevigen’s Comet assay kit (#4250–050-K). 

Briefly, Dox-induced cells and empty vector cells treated with and without metals were 

lysed, resuspended in low melting agarose, and spread evenly onto Comet slides. The slides 

were immersed in freshly prepared alkaline unwinding solution prior to alkaline 

electrophoresis. DNA in the nucleoid was visualized with SYBR Gold staining using an 

EVOS FL auto-fluorescence microscope (Life Technologies). Comet tail moment was 

scored using the Open Comet plugin for ImageJ software with 50 randomly selected cells.

Long amplicon (LA)-polymerase chain reaction (PCR)

After exposure to redox metals for 24 h, iFLAG-α-Syn SHSY5Y cells, SNCA-tri iPSCs, and 

respective controls were harvested for genomic DNA isolation using DNeasy blood and 

tissue kit (Qiagen #69504) as per the manufacturer’s instructions. Genome integrity was 

assessed using LongAmp Taq DNA polymerase (NEB) to amplify a 10.4 kB region of the 

HPTR gene with the following primers: 5’-TGG GAT TAC ACG TGT GAA CCA ACC-3’ 

and 5’-GCT CTA CCC TCT CCT CTA CCG TCC-3’ [39]. PCR was performed at 94°C for 

3 min followed by 25cycles at 94°C for 30 s, 58°C for 40 s, and 65°C for 10 min, and a final 

elongation step for 15 min. A small region (250 bp) of the HPRT gene was amplified using 

Jump-Start RedTaq DNA polymerase (Sigma) to normalize amplification obtained from the 

large fragment using the following primers: 5’-TGC TCG AGATGT GAT GAA GG-3’ and 

5’-CTG CAT TGT TTT GCC AGT GT-3’ [40]. All amplified products were separated by 

electrophoresis in 0.8% agarose gel and stained with ethidium bromide. Relative DNA 

amplification percentage was calculated by gel band density analysis using ImageJ software 

or Pico Green dsDNA assay (Invitrogen, p7589).

Immunofluorescence

pCW-iFLAG-α-Syn SHSY-5Y cells were grown on 8-well chamber slides. Slides for iPSCs 

and NPCs were coated with Matrigel and Geltrex, respectively. Cells were fixed by replacing 

the media with fresh media and adding 8% PFA in PBS, obtaining a 4% PFA solution. Slides 

were then permeabilized with 0.2% Triton 100X in 1X PBS and blocked with 3% BSA-

PBS-T (1 × PBS with 0.1% Tween-20) and incubated with primary antibody for α-Syn 

EP1646Y (Novus Biologicals) and anti-DDK (Origene Clone 4CS TA50011). After 

incubation with Alexa Fluor 488 (green)- and 558 (red)-conjugated secondary antibodies, 

coverslips were mounted in DAPI (Sigma). Images were taken using an Olympus BX61-

Regular Upright BF & Fluorescent/Reflect Microscope using a 60 × objective.
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Thioflavin T (Thio T) fluorescence

Recombinant α-Syn was incubated in 0.01 M Tris-HCl (pH 7.4) at 37°C with vigorous 

stirring with a magnetic bar in glass vials. Aliquots were removed from the incubation mix 

at the indicated time intervals and diluted to appropriate concentrations for Thio T 

fluorescence measurements to assess the formation of protein aggregates. Fluorescence was 

measured using a HITACHI 2000 spectrofluorimeter from the emission spectra (470–650 

nm) with excitation at 450 nm using a 5-nm band pass for both excitation and emission.

For DNA cleavage analysis in vitro, aliquots of α-Syn (1 μM) from the aggregation reaction 

were mixed with 0.1 μg plasmid scDNA (pUC19) and incubated at 37°C for 4 h before 

being separated by 1% agarose gel electrophoresis.

Quantification of DNA strand breaks

Single-strand breaks (SSBs) were quantified using a nick translation reaction with E. coli 
DNA polymerase I (Klenow Fragment), which adds nucleotides at the 3’-OH end of an SSB 

[41]. When one of the dNTPs is P–32-labeled, the incorporation of radioactivity is 

proportional to the number of SSBs present in the DNA. The 50 μL reaction mixture 

consisted of 40 mM Tris-HCl (pH 8.0), 1 mM β-mercaptoethanol, 7.5 mM MgCl2, 4 mM 

ATP, 100 μM each of dATP, dCTP, and dGTP, 25 μM dTTP, 1 μCi3[H]TTP, 1 μg plasmid 

scDNA, and 1 unit of E. coli DNA polymerase I together with the indicated amounts of α-

Syn.

Double-strand breaks (DSBs) were quantified by a terminal transferase based assay [42]. 

Terminal deoxynucleotidyl transferase catalyzes the addition of deoxynucleotides to the 3’ 

termini of DNA at the blunt end. Similar conditions were used to incubate DNA with 

terminal transferase, as in the case of E. coli polymerase I assay. The incorporation of3[H]-

dTTP into DNA is proportional to the number of DSBs in the DNA. DNA breaks were 

quantified with reference to a control DNA with a known number of breaks as described 

previously [43].

Circular dichroism (CD) studies

CD spectra (190–300 nm) were recorded on a JASCO J-700 spectropolarimeter for aliquots 

of α-Syn withdrawn from aggregation reactions at various time intervals. The protein was 

diluted to a final concentration of 5 μM in 0.01 M Hepes buffer (pH 7.0). Each spectrum was 

the average of four repetitions. All spectra were corrected by subtraction from buffer spectra.

Flow-cytometric analysis of cell death

The levels of apoptosis in iFLAG-α-Syn cells ± Dox treatment after exposure to metal salts 

for 24 h was measured using the FITC Annexin V apoptosis detection kit I (BD Biosciences 

556547). Flow-cytometric analysis of apoptotic cell death was performed as indicated earlier 

[44]. Briefly, cells were harvested, washed with PBS, and incubated with fluorescein 

isothiocynate (FITC) conjugated Annexin V and propidium iodide (PI) according to the 

instruction of Annexin V apoptosis detection kit. A total of 10,000 events were acquired per 

sample by fluorescence activated cell sorting (FACS) and analyzed using Flowjo software 
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(Becton-Dickinson Biosciences, San Jose, CA). Unstained and single fluorochrome controls 

were used for background subtraction (data not shown).

Reactive oxygen species (ROS) measurement in live cells

CellROX green reagent (Life Technologies C10492), a dye that binds to DNA upon 

oxidation, was used to assess ROS accumulation in iFLAG-α-Syn SHSY-5Y cells ± Dox 

exposed for 24 h to Fe/Cu salts. After treatment, cells were stained with Cell-ROX green 

following the manufacturer’s protocol. The data from FACS acquisition was analyzed using 

Flowjo software.

Statistical analysis

Graphpad prism 6 software was used for data analysis. Comparisons of groups were 

generated with two-way Anova followed by Sidak’s or Tukey’s multiple comparison test to 

compare selected pair of means. p-values are indicated in the associated figure legends.

RESULTS

Chromatin association of nuclear α-Syn and its physical binding to naked DNA in vitro

Despite compelling evidence for the binding of α-Syn to DNA oligos in vitro, there are 

conflicting reports in the literature concerning the presence and role of α-Syn in neuronal 

nuclei, particularly in PD condition. The difficulty in establishing the presence of nuclear α-

Syn appears primarily due to its predominantly cytosolic localization in presynaptic nerve 

terminals and the presence of a relatively low fraction (<5%) of the protein in the nuclear 

compartment under normal conditions. To conclusively test α-Syn localization and its 

interaction with chromatin, we generated a Dox-inducible FLAG-α-Syn-expressing 

SHSY-5Y cell line (pCW-iFLAG-α-Syn SHSY-5Y line) allowing ectopic expression of α-

Syn in a controlled and reproducible fashion. Dox treatment (5 μg/mL) for 72 h gradually 

increased both ectopic FLAG-α-Syn and total α-Syn levels in the pCW-iFLAG-α-Syn 

SHSY-5Y line (Fig. 1A). A ~ 2- to 3-fold increase in total α-Syn level was consistently 

observed at 72 h after Dox induction. Immunofluorescence using FLAG or α-Syn antibody 

showed significant nuclear localization of α-Syn with an increase in its expression, as 

indicated in the enlarged image acquired at 72 h of Dox induction (Fig. 1B). We then 

utilized modified PLA, which is a highly sensitive for in situ detection of protein-protein 

interaction in cells [45]. Here, instead of two antibodies for different proteins used in typical 

PLA, we used FLAG versus α-Syn antibodies in the pCW-iFLAG-α-Syn SHSY-5Y line to 

detect ectopic α-Syn. A number of nuclear PLA foci within DAPI-stained regions confirmed 

the presence of FLAG-α-Syn in the nuclei (Fig. 1C, top). We then examined the association 

of α-Syn with chromatin. Strong PLA signals for FLAG versus histone H3 antibodies 

showed α-Syn binding to H3 in the chromatin (Fig. 1C, bottom).

To further confirm the chromatin association of α-Syn, we performed chromatin 

immunoprecipitation (ChIP) using FLAG antibody in pCW-iFLAG-α-Syn SHSY-5Y cells 

and then PCR-amplified the purified ChIP DNA with a set of four randomly selected primer 

pairs. These primers targeted proximal (–165/+82; promoter region) and distal (–72987/–

72800) regions of the RARβ2 gene and a randomly selected segment within chromosome 17 
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that does not harbor any gene signature, and the HPRT gene. Relatively high amplification 

of proximal RARβ2 promoter region was observed compared to its distal region, or the non-

gene region in chromosome 17 (Fig. 1D, Supplemental Figure 1A). Moderately high binding 

was also observed for HPRT gene (Supplementary Figure 1B). These data not only 

suggested an association between α-Syn and chromatin but also indicated the possible 

functional binding of α-Syn to distinct chromosomal regions containing specific genes. 

However, we decided to pursue the functional implications of distinct and specific chromatin 

binding of α-Syn in a separate study and focus on the general pathological impact of α-Syn 

toxicity on neuronal genomes in the present study. Furthermore, we tested whether α-Syn 

binds to naked DNA in vitro using a biotin affinity co-elution analysis. Immunoblotting 

revealed that both recombinant α-Syn (Rec.α-Syn) and α-Syn in the SHSY-5Y nuclear 

extract co-eluted with a biotin-tagged duplex oligonucleotide (Fig. 1E). Together, these data 

demonstrate that α-Syn binds to DNA and chromatin both in cells and in vitro.

α-Syn expression induces strand breaks in the neuronal genome synergistically with Fe

The evidence for the presence of extensive genome damage in PD-affected human brains 

and various PD model systems [29–31] led us to examine DNA breaks in α-Syn-

overexpressing cells in presence of pro-oxidant Fe or Cu salts. Fe has been shown to 

accumulate in α-Syn-rich Lewy bodies in the PD brain and within α-Syn-rich inclusions in 

PD neuronal cells [6, 46]. Alkaline Comet assay of the pCW-iFLAG-α-Syn SHSY-5Y line 

showed a pronounced increase in mean comet tail moment 48 h after Dox induction, which 

was further enhanced in FeSO4-treated cells (Fig. 2A, B). Five-fold increase in genome 

damage was caused by ~2-fold induction of α-Syn. The presence of FeSO4 resulted in about 

an 8-fold increase in strand breaks in α-Syn-overexpressing cells. Unlike FeSO4, which 

showed synergistic toxicity when combined with α-Syn, CuSO4 showed only an additive 

effect. A similar dose of FeSO4 and CuSO4 exposure in uninduced pCW-iFLAG-α-Syn 

SHSY-5Y cells caused only moderate (<2-fold) increase in the mean comet tail moment. 

LA-PCR analysis of the genomic DNA isolated from the above cells confirmed marked 

reduction in genomic integrity in Fe-treated, α-Syn-overexpressing cells (Fig. 2C, D). 

Amplification of a 10.4 kb and a shorter 250 bp region within the HPRT gene followed by 

agarose gel electrophoresis (Fig. 2C) and gel band density-based quantification (Fig. 1D) 

showed 30% decrease in amplified product in α-Syn-overexpressing cells. A reduction in 

amplified product in LA-PCR indicates the presence of strand breaks within the amplified 

region [39]. Consistent with Comet analysis, a further 45% and 70% decrease was observed 

in CuSO4-and FeSO4-treated cells, respectively (Fig. 2C, D). Similarly, addition of 

recombinant α-Syn to cultured SHSY-5Y cells combined with Fe cooperatively induced 

extensive DNA damage (Supplementary Figure 2).

Nuclear but not cytosolic α-Syn induces neuronal genome damage

To test the direct role of nuclear α-Syn in causing genome damage, we transiently 

transfected SHSY-5Y cells with mutant α-Syn expression vectors containing additional NLS 

or NES sequences. Immunofluorescence (Fig. 3A) and immunoblotting (Fig. 3B) confirmed 

the nuclear- and cytosolic expression of NLS-α-Syn and NES-α-Syn, respectively. Comet 

analysis showed about 2-fold higher mean tail moment for NLS-α-Syn-expressing cells 

compared with WT-α-Syn or NES-α-Syn cells (Fig. 3C, D). The damage was further 
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enhanced after Fe or Cu treatment in NLS-α-Syn and WT-α-Syn cells but not in NES-α-Syn 

cells. These data thus demonstrate that the nuclear localization of α-Syn is required for 

inducing genome damage in neurons.

DNA nicking activity of α-Syn is enhanced by misfolding/oligomerization.

We next examined the effect of α-Syn binding on plasmid scDNA using recombinant protein 

in vitro. Separation of plasmid DNA by agarose gel electrophoresis after incubation with α-

Syn for 12 h showed conversion of the scDNA form into a mixture of open circular and 

linear forms together with shorter sheared fragments (Fig. 4A). Quantification of breaks in 

plasmid DNA using a nick translation method [29, 43] showed 6-fold increase in SSBs but 

only a moderate increase in DSBs (Fig. 4B).

We then correlated the misfolding/aggregation of α-Syn with its DNA nicking activity. 

Aliquots of α-Syn incubated with constant stirring for promoting aggregation, as monitored 

by Thio T fluorescence (Fig. 4C), were mixed with scDNA, and strand breaks were 

quantified by agarose gel (Fig. 4D) and nick translation (Fig. 4E). Interestingly, the 

misfolded or early oligomeric α-Syn indicated by CD spectroscopy (Fig. 4F) caused higher 

DNA damage compared with monomeric or aggregated forms. This is again consistent with 

the model of higher toxicity of α-Syn oligomers [47].

Oxidation of α-Syn may promote its DNA nicking activity

α-Syn has been shown to oxidize in PD conditions [13]. Based on this previous observation 

and the enhancement of DNA nicking activity by α-Syn-pro-oxidant metal complex in our 

study, we suspected that the oxidized form of α-Syn might mediate DNA cleavage. To test 

this possibility, we exposed riboflavin with UVB to generate1O2 before incubation with α-

Syn for 1 h followed by mixing with scDNA. Agarose gel electrophoresis showed significant 

shearing of DNA by oxidized α-Syn compared with WT-α-Syn or1O2-treated DNA (Fig. 

5A). We then treated SHSY-5Y cells with WT- or oxidized α-Syn and quantified genome 

damage by Comet analysis (Fig. 5B). Consistent with the in vitro data, an ~5-fold higher 

mean tail moment was observed with oxidized α-Syn versus a 2-fold increase with WT-α-

Syn. These data suggest that oxidized α-Syn is critical for inducing genome damage. Similar 

chemical nuclease activity of short oxidized peptides containing oxidizable Tyr or Thr 

residues together with basic residues has been previously characterized [48]. These peptides 

extract protons from phosphodiester bonds in the DNA backbone to nick DNA. It is likely 

that α-Syn-mediated genome damage involves a similar chemical nicking mechanism.

Fe-dependent ROS generation after α-Syn induction in neurons

We observed a significant increase in ROS-positive cells after α-Syn in the presence of 

FeSO4 but not in the presence of CuSO4 (Fig. 6A, B). Fluorescence microscopy revealed 

increased α-Syn aggregate formation in the perinuclear region of FLAG-α-Syn-

overexpressing cells exposed to FeSO4 (Fig. 6C). However, the negligible increase in ROS 

with CuSO4 was surprising but is likely due to activation of Cu/Zn superoxide dismutase by 

Cu to quench ROS [49].
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α-Syn-induced genome damage in NPC lines derived from PD patient iPSC cells

Given that a small pool of neural stem cells are a potential source for replacing degenerated 

neurons in PD patients [50], we generated NPC lines from a normal or PD patient–derived 

SNCA-tri iPSC cells and characterized the NPCs with appropriate markers (Fig. 7A–C). The 

SNCA-tri iPSC line possesses SNCA gene triplication and thus shows ~3-fold 

overexpression in α-Syn levels and up to ~5-fold overexpression upon conversion to NPC, 

as confirmed by immunofluorescence (Fig. 7C) and mRNA quantitation by RT-PCR (Fig. 

7D), consistent with previous studies [51]. DNA damage analysis by LAPCR showed 

presence of significantly higher number of DNA strand breaks in SNCA-tri NPC cells 

compared to control NPC cells (Fig. 7E), as indicated by ~30% reduced amplification of 

HPRT gene long amplicon quantified using Pico Green dsDNA assay (Fig. 7F). Exposure to 

200 μM FeSO4 synergistically increased DNA damage in SNCA-tri NPC cells over the 

control. The moderate synergy of Fe in SNCA-tri NPC cells (Fig. 7 E, F) over transiently 

induced α-Syn in pCW-iFLAG-α-Syn SHSY-5Y line (Fig. 2) may be attributed to the 

constitutive overexpression of α-Syn in SNCA-tri NPC line, which may sequester cellular 

Fe. On the other hand, CuSO4 induced DNA damage is comparable to that in Fe-treated 

NPC cells, unlike in SHSY-5Y cells, presumably due to their differential antioxidant 

capacity. Furthermore, treatment of control NPC cells with 300 nM recombinant α-Syn 

together with 200 μM FeSO4 resulted in a ~ 22% reduction in HPRT gene amplification 

product (Supplementary Figure 2B).

α-Syn and Fe cooperatively induce neuronal apoptosis

To further address the Fe-dependent neurotoxicity of α-Syn, we performed Annexin V-

FITC/PI dual staining pCW-iFLAG-α-Syn SHSY-5Y cells with or without Fe/Cu. The cells 

were induced for 48 h with Dox, which resulted in ~12% increase in early (Q3) and late 

(Q2) apoptotic cell population. Both un-induced and induced cells were then exposed to 

FeSO4 or CuSO4. A 4–8% cell population migrated directly from Q1 to Q4 in un-induced 

cells after Fe/Cu treatment, which presumably represents a combination of necrosis and 

ferroptosis [52, 53] (Fig. 8A). However, Fe caused a significant increase (~ 16%) in early 

and late apoptotic cells (quantitated from Q2 and Q3, respectively) in Dox-induced cells 

(Fig. 8A, B). CuSO4 did not affect α-Syn-mediated neuronal apoptosis in Dox-induced 

cells. Interestingly, Fe- or Cu- induced necrosis or possible ferroptosis (Q4) observed in un-

induced cells was prevented after α-Syn induction. This is likely due to sequestration of free 

metal ions by overexpressed α-Syn, preventing metal mediated necrosis/ferroptosis.

DISCUSSION

Our results demonstrate novel DNA cleavage activity of α-Syn both in vitro and in genomes 

of cultured neurons. This activity was upregulated in the presence of pro-oxidant Fe as well 

as1O2. We first established that nuclear-localized α-Syn binds to distinct DNA sequences in 

the chromatin and physically binds naked DNA in vitro. To gain further molecular insights 

into α-Syn’s DNA binding and nicking activity, we used MD simulation with nucleic acid-

protein docking method (NPDock) [54] to predict the three-dimensional structure of the α-

Syn-DNA complex (Fig. 9 and Supplementary Figure 3). The DNA was predicted to interact 

with the positively charged lysine-rich repeat motifs (KTKEGV) located predominantly in 
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the N-terminus and partly in the central domains of the α-Syn sequence. The DNA is highly 

unlikely to bind to the C-terminal end of α-Syn, which is rich in negatively charged 

residues. Consistently, previous studies show that α-Syn has a propensity to form broken 

helices in the N-terminal region owing to the presence of several 11 amino acid repeats that 

may form a helix-turn-helix type of motif that is commonly present in many classical DNA-

binding proteins [55, 56]. After α-Syn’s initial electrostatic interaction with the DNA 

backbone, subtle conformational change in α-Syn, induced by its oxidation or by Fe, could 

stabilize the interaction facilitating DNA nicking activity. In cells, however, α-Syn 

interaction with histone proteins (Fig. 1C) may contribute to the initial chromatin binding.

Although α-Syn is primarily a presynaptic nerve terminal protein that is predominantly 

enriched in the membrane, several studies show the presence of α-Syn in neuronal nuclei 

[18, 21, 23, 24]. However, the functional or pathological implications of nuclear α-Syn are 

unclear. Ma et al. suggest that residues (103–140) located at the C-terminus of α-Syn are 

critical for its nuclear localization [22]. They have also proposed involvement of importin α, 

a nuclear-transport receptor protein, in the translocation of α-Syn into the nucleus. Although 

no direct interaction between α-Syn and importin α was observed, the authors suggest the 

involvement of other proteins mediating complex formation. Another recent study reported 

the role of a tripartite motif-containing protein 28 (TRIM28) in stabilizing α-Syn in the 

neuronal nucleus [25]. TRIM28 contains an NLS sequence that interacts with various 

importin α subtypes, facilitating its nuclear import where it binds to chromatin [57, 58]. 

TRIM28, along with importin α, may thus play a role in α-Syn’s nuclear import, which 

should be further investigated. Moreover, under PD condi tions, α-Syn nuclear localization 

is likely enhanced due to non-specific transportation through the oxidatively damaged 

nuclear membrane [11]. Recent studies showed that overexpressed α-Syn accumulates in the 

perinuclear region, which is consistent with our findings. Cells exposed to Fe have been 

found to present Fe-rich α-Syn inclusions within the perinuclear regions [46]. Interestingly, 

Fe has also been found to disrupt the nuclear membrane, allowing perinuclear α-Syn to 

translocate into disrupted nuclei [59]. Thus, both physiological and pathological conditions 

could favor α-Syn’s nuclear localization in PD-affected neurons.

The fact that increased oxidative stress and Fe accumulation are hallmarks of the PD brain, 

led us to investigate the impact of these conditions on α-Syn-DNA interaction. We observed 

that α-Syn overexpression combined with Fe exposure or oxidative stress significantly 

enhanced DNA damage in the neuronal genome. Furthermore, genome damage was 

dependent on nuclear α-Syn as determined by the expression of NLS or NES mutants. On 

the other hand, cytosol-specific α-Syn expression inhibited DNA breaks formation even in 

the presence of metal salts, likely due to their sequestration by oligomeric α-Syn. 

Furthermore, the enhanced DNA nicking activity of α-Syn after its exposure to1O2 or Fe, 

suggests that oxidized α-Syn is involved in causing DNA strand-breaks, likely by acting as a 

chemical nuclease. It was previously shown that when surrounded by basic residues, 

peroxides of Trp, Tyr, Met, Asp, Pro, and Cys in proteins formed by ROS and/or transition 

metals, acquire DNA strand cleavage activity, by abstracting a proton from the 

phosphodiester linkage, causing its cleavage [48]. It is likely that a similar mechanism is 

involved in α-Syn induced DNA damage. Fe ions could contribute to α-Syn oxidation via 

their binding to oxidation prone residues such as Met, Cys, Thr, Tyr, and Trp in α-Syn. 
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Interestingly, we found that the DNA cleavage level was the highest with misfolded/

oligomeric α-Syn, suggesting that exposure of oxidation-prone regions may be critical. We 

propose that blocking oxidation prone peptide sequence in combination with metal chelators 

could be an effective therapeutic strategy, which we are currently investigating. In cells, α-

Syn folding could be promoted by accumulated redox active metal ions, as was reported by 

our lab [60, 61] and others [9, 10]. In addition to α-Syn, Aβ, tau and prion proteins 

implicated in AD and prion diseases, also have DNA binding activity, suggesting that DNA 

binding is a common property of many amyloidogenic proteins associated with various 

neurodegenerative disorders [28, 62–64]. However, the role of their DNA binding in disease 

pathology has not been well studied.

In addition to Fe, previous studies have showed that α-Syn binds Cu in vitro. Cu was shown 

to bind the1MVDFM5 motif in the α-Syn N-terminus and promote its oligomerization [14]. 

However, our in cell data show no synergistic neurotoxicity or genome damage by α-Syn 

and Cu. This raises the question about the in vivo relevance of toxicity of Cu-α-Syn 

complex for PD. Unlike the available compelling evidence for Fe accumulation, Cu has not 

been consistently shown to accumulate in the PD brain, nor in Lewy body inclusions. 

Furthermore, Cu at low concentrations could activate superoxide dismutase, and thus may 

protect cells from ROS toxicity [49]. Although both Fe and Cu are redox-active, they have 

the distinct ability to affect α-Syn-mediated neurotoxicity. Furthermore, Fe and Cu caused a 

small but subtle increase in non-apoptotic cell death (Q1 to Q4 migration in Fig. 8) in 

cultured neurons in the absence of α-Syn, which was prevented by α-Syn overexpression, 

although apoptotic cell population increased. While the nature of this direct metal induced 

cell death is not clear, it is possible that both necrosis and recently discovered ferroptosis 

[52] contributes to the pathway triggered by direct exposure to free metals in cultured cells 

that lack robust metal storage/sequestration machinery. Recent studies show that activation 

of ferroptosis plays a role in the nonapoptotic destruction of cancer cells, but its inhibition 

may protect from neurodegeneration. The prevention of such non-apoptotic cell death after 

α-Syn induction suggests that moderate increase in α-Syn may be protective against Fe-

induced ferroptosis, which should be the subject of future investigation.

It is important to note that α-Syn primarily forms SSBs in DNA. However, with prolonged 

incubation with α-Syn in vitro, DSBs were formed in plasmid DNA, presumably due to the 

accumulation of several SSBs in close proximity. A schematic representation of the DNA 

cleavage mechanism of α-Syn is shown in Fig. 10. Our studies thus highlight the role of α-

Syn in inducing DNA cleavage and the contribution of ROS or pro-oxidant Fe/Cu to this 

process, which may have a profound impact on our approach to PD prevention and therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Nuclear localization and chromatin/DNA binding of α-Syn. A, B) Characterization of time-

dependent induction of FLAG-α-Syn in a SHSY-5Y cell line stably harboring tet-on (Dox-

inducible) pCW-iFLAG-α-Syn vector. Immunoblotting (A) and immunofluorescence (B) 

revealed a time-dependent increase (2–4-fold) in both FLAG and total α-Syn levels after 

induction with Dox for 24–72 h in differentiated cells. The presence of nuclear α-Syn after 

72 h of Dox induction is indicated in the enlarged image. C) PLA of FLAG versus α-Syn 

antibody in pCW-iFLAG-α-Syn SHSY-5Y cells. A PLA focus in the nucleus (DAPI) 
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detected the same molecule of ectopic α-Syn. PLA of FLAG versus histone H3 antibody 

confirmed interaction with H3 in the nucleus. D) ChIP assay using FLAG antibody from 

pCW-iFLAG-α-Syn SHSY-5Y cells after Dox induction (72 h) and real-time PCR 

amplification using three randomly selected primer pairs. E) In vitro biotin affinity co-

elution analysis. Immunoblotting of SHSY-5Y cell nuclear extract or recombinant α-Syn co-

eluted with biotin-labeled duplex DNA oligo.

Vasquez et al. Page 19

J Alzheimers Dis. Author manuscript; available in PMC 2018 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Increased α-Syn expression causes DNA breaks in neurons synergistically with pro-oxidant 

metals. A, B) Alkaline Comet assay in iFLAG-α-Syn SHSY-5Y cells exposed to 200 μM 

FeSO4 or CuSO4. α-Syn was induced with Dox for 48 h. Metal salts alone at the same 

concentration caused only moderate increases in strand breaks. C, D) Semi-quantitative LA-

PCR assay for genomic DNA isolated from pCW-iFLAG-α-Syn SHSY-5Y cells in the 

presence of FeSO4 or CuSO4. ***p ≤ 0.001; ****p ≤ 0.0001.
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Fig. 3. 
Nuclear α-Syn is required for inducing genome damage in neurons. A) Immunofluorescence 

images demonstrating nucleus- or cytoplasm-specific expression of mutant α-Syn vectors 

containing additional NES or NLS after their transient transfection in SHSY-5Y cells. B) 

Immunoblotting of cytosolic and nuclear fractions from WT-, NES-, and NLS-α-Syn-

expressing SHSY-5Y cells. C, D) Alkaline Comet assay in NLS-, NES-, or WT-α-Syn-

expressing cells with or without FeSO4 or CuSO4.
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Fig. 4. 
Recombinant α-Syn nicks naked DNA in vitro, which is enhanced by its misfolding/

oligomerization. A) Agarose gel electrophoresis showing plasmid scDNA cleavage by 

recombinant α-Syn. B) Assessment of SSBs and DSBs in scDNA induced by α-Syn. Values 

are expressed as SSBs and DSBs induced per μg of scDNA. C) Recombinant α-Syn was 

incubated with constant stirring to cause its aggregation, which was monitored by Thio T 

fluorescence analysis with an aliquot of α-Syn taken at various time intervals. D) The α-Syn 

aliquots were also analyzed for their DNA nicking activity with plasmid DNA by agarose 

gel electrophoresis. E) DNA breaks were quantified. F) Misfolding/β-sheet formation in α-

Syn upon stirring as confirmed by CD spectroscopy.
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Fig. 5. 
α-Syn DNA nicking activity may be mediated by its oxidation. A) Exposure of recombinant 

α-Syn to1O2, generated by exposing flavonoid Bengal red to UVB radiation, enhanced its 

DNA nicking activity with plasmid scDNA in vitro. The products were analyzed by agarose 

gel electrophoresis. The histogram represents quantification of DNA fragmentation. B) 

SHSY-5Y cells were exposed to similarly oxidized α-Syn, and DNA damage was quantified 

by alkaline Comet assay.
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Fig. 6. 
Fe-dependent ROS generation and α-Syn aggregation in pCW-iFLAG-α-Syn SHSY-5Y 

cells. A, B) Cells treated with FeSO4 but not CuSO4 showed a significant increase in nuclear 

and mitochondrial ROS load. Results are presented as percentage of ROS-positive cells; 

error bars in the histogram represent the standard error of the mean (SEM) from three 

independent experiments. C) Immunofluorescence indicates α-Syn aggregate formation in 

FeSO4-treated cells. **p ≤ 0.01.

Vasquez et al. Page 24

J Alzheimers Dis. Author manuscript; available in PMC 2018 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
DNA damage in neurons generated from normal and PD patient-derived SNCA-tri iPSC 

cells. A) Phase contrast image demonstrating generation of NPCs from iPSCs: (a) SNCA-tri 
iPSCs cultured in MEF feeder layer, (b) SNCA-tri iPSCs cultured in feeder free layer, (c) 

day 2, (d) day 4, (e) day 6 of neural induction for NPC derivation, (f) NPC at passage 3. The 

iPSC specific marker Oct4 and neural precursor markers nestin analyzed by immunoblotting 

(B). C) Immunofluorescence characterization with nestin and α-Syn protein expression. D) 

α-SYN mRNA quantitation in control versus SNCA-tri iPSC and NPC cells. E, F) LA-PCR 

analysis of genomic DNA isolated from control or SNCA-tri NPC cells exposed to 200 μM 

FeSO4 or CuSO4. ***p ≤ 0.001.
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Fig. 8. 
α-Syn and Fe synergistically induce neuronal apoptosis. A) pCW-iFLAG-α-Syn SHSY-5Y 

cells were induced with Dox for 48 h and then treated with 200 μM FeSO4 or CuSO4 for 24 

h before being double-stained with Annexin V/PI and analyzed by flow cytometry. 

B)Results are presented as percentage of total apoptotic cells (early apoptotic (Q3)+ late 

apoptotic (Q2)). Error bars represent the SEM from three independent experiments. Fe or Cu 

alone caused a 4–8% necrosis (Q4) in uninduced cells, which was prevented by α-Syn 

induced cells. *p ≤ 0.05; **p ≤ 0.01.
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Fig. 9. 
MD simulation: α-Syn N-terminal residues may be involved in DNA binding. Protein-DNA 

docking Model 1 demonstrating binding of α-Syn (PDB: 1XQ8) N-terminal amino acid 

residues Glu-35, Ser-42, Thr-54 to the crystal structure of d(CCGGTACCGG) as a B-DNA 

duplex (PDB: 3IXN). This structure model represents the best structure from the biggest 

cluster after the refinement process. Structures were analyzed using PyMOL Molecular 

Graphics System, Version 1.7.4.5 Schrödinger, LLC.
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Fig. 10. 
Model illustrating how α-Syn-induced DNA breaks contributes to neuronal apoptosis in PD. 

The role of pro-oxidant Fe or ROS in promoting α-Syn misfolding and oxidation, which 

could exacerbate its DNA nicking activity.
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