
1Scientific RepoRtS |         (2019) 9:18828  | https://doi.org/10.1038/s41598-019-55336-y

www.nature.com/scientificreports

tempo and mode of allopatric 
divergence in the weakly electric 
fish Sternopygus dariensis in the 
Isthmus of Panama
Celestino Aguilar  1,2,3,4, Matthew J. Miller1,5, Jose R. Loaiza  1,3,6, Rigoberto González3, 
Rüdiger Krahe  7,8 & Luis F. De León  1,3,4*

Spatial isolation is one of the main drivers of allopatric speciation, but the extent to which spatially-
segregated populations accumulate genetic differences relevant to speciation is not always clear. We 
used data from ultraconserved elements (UCEs) and whole mitochondrial genomes (i.e., mitogenomes) 
to explore genetic variation among allopatric populations of the weakly electric fish Sternopygus 
dariensis across the Isthmus of Panama. We found strong genetic divergence between eastern and 
western populations of S. dariensis. Over 77% of the UCE loci examined were differentially fixed 
between populations, and these loci appear to be distributed across the species’ genome. Population 
divergence occurred within the last 1.1 million years, perhaps due to global glaciation oscillations 
during the Pleistocene. Our results are consistent with a pattern of genetic differentiation under strict 
geographic isolation, and suggest the presence of incipient allopatric species within S. dariensis. Genetic 
divergence in S. dariensis likely occurred in situ, long after the closure of the Isthmus of Panama. Our 
study highlights the contribution of spatial isolation and vicariance to promoting rapid diversification 
in Neotropical freshwater fishes. The study of spatially-segregated populations within the Isthmus of 
Panama could reveal how genetic differences accumulate as allopatric speciation proceeds.

The closure of the Isthmus of Panama is one of the main drivers of Neotropical diversification. On the one hand, 
the rise of the Isthmus resulted in immediate reduction in gene flow between marine organisms on the two sides 
of the Isthmus1–4. On the other, the exposure of the land bridge facilitated dispersal and colonization in both ter-
restrial5 and freshwater organisms6,7. In addition, global events such as the Pleistocene glaciations8 have facilitated 
the expansion and contraction of local populations via changes in sea level9–11. Together, these events have defined 
the current spatial structure of the Isthmian populations6,12–14, with implications for allopatric divergence across 
isolated populations.

Accordingly, spatial isolation of populations along and across the Isthmus of Panama is expected to facilitate 
the accumulation of genetic differences leading to the formation of new species15–19. However, the extent to which 
spatially segregated populations accumulate genetic differences relevant to allopatric divergence is not always 
clear. In addition, if divergence occurs, its historical context might be difficult to define, given the dynamic nature 
of the rise of the Isthmus of Panama. For instance, allopatric divergence might proceed randomly across the range 
of segregated populations, or it might be driven by multiple dispersal and colonization events6–21. Furthermore, 
divergence of seemingly isolated populations might be influenced by selective (i.e., local adaptation) and random 
processes (i.e., drift) that are difficult to disentangle if relying on low numbers of molecular markers22. Here, 
we explore these issues by quantifying genetic variation at both nuclear loci linked to ultraconserved elements 
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(UCEs23,24; and whole mitochondrial genomes across geographically segregated populations of the weakly electric 
fish, Sternopygus dariensis, in the Isthmus of Panama.

Sternopygus dariensis (Meek & Hildebrand, 1916) is a geographically unique species within the Blue-green 
knifefish (S. aequilabiatus; Humboldt, 1805) species complex. Similar to other Neotropical electric fishes25, this 
Sternopygus complex originated in South America, but it has since colonized the Isthmus of Panama. Although 
it has not been resolved whether S. aequilabiatus and S. dariensis are allospecies or distinct species, here we 
consider S. dariensis as an independent species following Hulen et al.26 and Albert27. However, our inferences 
do not change if we consider S. dariensis as synonym of S. aequilabiatus as suggested by Maldonado et al.28. 
Sternopygus dariensis is narrowly distributed from the Pacific slope of Colombia to the Tabasará River in west-
ern Panama26, which represents the effective range limit of the species. As with other weakly electric fishes, S. 
dariensis has an elongate eel-shaped body and the ability to produce electric organ discharges (EOD) used for 
electrolocation and communication29,30. Interestingly, despite evidence for genetic variation in other species of 
the genus Sternopygus31,32 no population-level analysis has been performed within the Isthmus of Panama. Thus, 
quantifying genetic variation across Isthmian populations of S. dariensis will help inform the tempo and mode of 
allopatric divergence in Neotropical freshwater fishes.

By integrating available data from mitogenomes as well as UCEs, we examine i) the historical factors driving 
allopatric divergence across spatially segregated populations, and ii) the genetic consequences of allopatric diver-
gence in the weakly electric fish S. dariensis across the Isthmus of Panama.

Results
Ultraconserved elements (UCEs). We recovered 150 UCE loci (32 were invariant) that had an aver-
age length of 861 bp shared across individuals of S. dariensis. The 118 variant loci contained 285 single nucleo-
tide polymorphisms (SNPs), ranging from 1 to 8 SNPs per locus. The complete dataset including the outgroup 
Eigenmannia humboldtii had 98 enriched UCE loci with a total alignment length of 85 028 bp. UCE raw read data 
are available on NCBI SRA SRP071703 (BioProject PRJNA480353, see Table 1 for BioSample numbers). Overall, 
our RAxML phylogeny analysis using 98 UCEs showed high bootstrap support (100%) for one western and one 
eastern clade, comprising samples from San Pablo, Santa María, and Tumaganti, and samples from Chucunaque, 
respectively (Fig. 1C).

Similar results were obtained with the Bayesian clustering analyses (based on the 118 SNPs), which revealed 
high posterior probability for two well-defined independent clusters (K = 2), as identified by maximum ΔK value 
(Fig. 1B). These two clusters corresponded to western (Santa María, San Pablo and Tumaganti), and eastern 
(Chucunaque) Panama, respectively.

When examining genetic divergence between clades, we identified a total of 91 (77%) UCE loci containing 
150 fixed SNPs. All UCE loci were successfully mapped to the available genomic scaffolds of the electric eel 
(Electrophorus electricus), and 83 loci (containing 129 fixed SNPs) were mapped to the channel catfish (Ictalurus 
punctatus) genome (Fig. 2; Supplementary Table S1). These 129 fixed SNPs were located in 22 of the 29 channel 

Sample 
ID Species Region River

Genbank

ReferenceBioSample mtDNA

PB05 Sternopygus dariensis eastern Chucunaque SAMN09637294 MK530706 Present study

PB06 Sternopygus dariensis eastern Chucunaque SAMN09637295 MH399590 Aguilar et al. 2019

PB07 Sternopygus dariensis eastern Chucunaque SAMN09637296 — Present study

Tu218 Sternopygus dariensis western Tumaganti SAMN09637297 MK530707 Present study

Tu219 Sternopygus dariensis western Tumaganti SAMN09637298 MH605315 Present study

Tu221 Sternopygus dariensis western Tumaganti SAMN09637299 — Present study

RSM01 Sternopygus dariensis western Santa María SAMN09637300 MH605309 Present study

RSM02 Sternopygus dariensis western Santa María SAMN09637301 MH605310 Present study

RSM03 Sternopygus dariensis western Santa María SAMN09637302 MH605311 Present study

RSP02 Sternopygus dariensis western San Pablo SAMN09637303 MH605312 Present study

RSP03 Sternopygus dariensis western San Pablo SAMN09637304 MH605313 Present study

RSP04 Sternopygus dariensis western San Pablo SAMN09637305 MH605314 Present study

Tu227 Eigenmannia humboldtii outgroup Tumaganti SAMN09637306 — Present study

PB01 Eigenmannia humboldtii outgroup Chucunaque SAMN09637307 — Present study

— Sternopygus arenatus outgroup — — KX058571 Elbassiouny et al. 
2016

— Sternopygus macrurus outgroup MH263671 Rincón-Sandoval et 
al. 2018

— Eigenmannia humboldtii outgroup MH263668 Rincón-Sandoval et 
al. 2018

— Eigenmannia sp. outgroup — — AB054131 Saitoh et al. 2003

— Apteronotus rostratus outgroup MH399592 Aguilar et al. 2019

Table 1. Sample information for S. dariensis and other Gymnotiformes included in the present study. Genbank 
short-read archive (BioSample) for ultraconserved elements (UCEs) and accession numbers for mitogenomes 
(mtDNA) are also provided.
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catfish chromosomes, and ranged from 1 to 18 SNPs per chromosome, with chromosome 6 showing the high-
est number of fixed SNPs (Fig. 2). In addition, 21 fixed SNPs did not map to any of the known channel catfish 
chromosomes. Across the complete data matrix (285 SNPs), only seven chromosomes (5, 16, 17, 21, 26, 28 and 
29) did not show fixed SNPs (Fig. 2). The distribution of fixed SNPs across the electric eel scaffolds was wide-
spread and appeared to show similar positions with respect to their location on the channel catfish chromosomes 
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Figure 1. Phylogenetic reconstruction of allopatric populations of S. dariensis based on UCE data. The figure 
shows sampling sites (A), population structure with K = 2 representing the highest posterior probabilities as 
implemented in STRUCTURE and CLUMPPAK, for 118 SNPs (B), and maximum likelihood tree inferred by 
RAxML, for 98 UCEs sequences. Numbers at the nodes are bootstrap values (C).
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Figure 2. Chromosomal position of SNPs linked to UCEs in S. dariensis. Pink bars show highly differentiated 
SNPs between eastern and western populations within the Isthmus of Panama. Blue bars show non-
differentiated SNPs. Chromosome mapping was done using the channel catfish reference genome. Chromosome 
“0” indicates a set of SNPs that did not map to any of the known chromosomes. The upper right inset shows the 
frequency distribution of FST values between eastern and western populations across the entire SNP dataset.
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(Supplementary Table S1). In addition, the frequency distribution of FST estimates between clades was highly 
skewed toward large values (Mean = 0.65, Median = 1.0, Skewness = −0.62; Fig. 2). Finally, our analysis of outlier 
loci using BayeScan 2.133 failed to detect loci under directional selection (Mean q-val = 0.90). By contrast, the 
PCAdapt analysis identified 12 potential outlier loci associated with differences between the two lineages, at FDR 
of 0.05 (Fig. S1). These SNPs occurred over 11 separate chromosomes of the channel catfish genome.

Mitogenomes. We recovered a total of 9 complete mitogenomes: 8 from the present study (GenBank acces-
sion nos. MH605309-MH605315 and MK530706) and one assembled previously (MH39959034) (Table 1). We 
also were able to retrieve a partial mitogenome from 1 individual from Tumaganti (GenBank accession no. 
MK530707). Both maximum likelihood and Bayesian phylogenetic analyses based on a concatenated dataset of 
12 protein-coding genes (PCGs) derived from whole mitogenomes yielded a monophyletic relationship among 
samples of S. dariensis collected in Panama (Fig. 3). In agreement with the UCE results, we detected two highly 
supported (BS, 100%; PP, 1.0) phylogenetic clades within S. dariensis (Fig. 1C). One clade comprised samples 
from the three western populations (San Pablo, Santa María and Tumaganti rivers), and the other encompassed 
samples from the eastern population of the Chucunaque River (Fig. 3). Furthermore, the most western popula-
tions of S. dariensis, San Pablo and Santa María and Tumaganti, showed similar genetic distances among them 
(~0.18%), but the greatest genetic distance (2.83%, SE = 0.25%) from the eastern population of the Chucunaque 
River (Table 2). Across species, we found high levels of genetic divergence between S. dariensis and its most 
closely related species, S. arenatus (6.6%, SE = 0.91%) (Table 3).

TCS35 haplotype networks were characterized by two centrally shared haplotypes, corresponding to the east-
ern and western populations, which were separated by up to 13 mutational events. In addition, there were three 
peripheral haplotypes. The most common haplotype was shared by the western populations (Santa María and San 
Pablo) and represented up to 45% of all sampled individuals. The second-most common haplotype was unique 
to the eastern population (Chucunaque River; Supplementary Fig. S2). These results suggest the presence of two 
distinct genetic groups spanning the four geographical locations sampled.
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Figure 3. Phylogenetic relationships among S. dariensis based on RAxML and MrBayes. The phylogeny 
represents the best-scoring maximum likelihood tree based on 12 PCGs. Branch lengths are mean estimates. 
Numbers at the nodes are posterior probabilities and bootstrap values. The scale bar indicates relative branch 
lengths.
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Time to the most recent common ancestor (TMRCA). Mitochondrial-based dating of TMRCA 
placed the first split within Sternopygidae around 13.6 Ma (95% HPD: 10–28.4 Ma; Fig. 4), separating members 
of Eigenmanninae and Sternopygus. Two clades separated 6.3 Ma (95% HPD: 2.58–12.28 Ma) were identified 
within Sternopygus, the first one including S. arenatus and S. dariensis; the second clade included S. macrurus and 
S. xingu. The split within the first clade (S. arenatus and S. dariensis) occurred during the Pliocene period, approx-
imately 3.4 Ma (95% HPD: 1.2–6.7 Ma), while divergence between western and eastern clades of S. dariensis took 
place in the Pleistocene, approximately 1.1 Ma (95% HPD: 0.5–2.6 Ma).

Discussion
Allopatric divergence most often occurs when populations accumulate random genetic differences as a byproduct 
of spatial isolation19,36,37. However, the extent to which spatially segregated populations show progress towards 
allopatric divergence is not always obvious. Here, we explore this issue by using a panel of over 285 UCE, SNPs 
and complete mitogenome sequences in the weakly electric fish S. dariensis in the context of the biogeographic 
history of the Isthmus of Panama.

Locality Chucunaque Tumaganti Santa María

Tumaganti 0.02807

Santa María 0.02845 0.00366

San Pablo 0.02839 0.00354 0.00049

Table 2. Pairwise uncorrected p-distances between populations of Sternopygus dariensis based on 12 PCGs.

Species S. dariensis S. arenatus S. xingu

S. arenatus 0.06599

S. xingu 0.12034 0.10404

S. macrurus 0.14441 0.12422 0.13509

Table 3. Pairwise uncorrected p-distances between Sternopygus species based on cox1 gene.
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Figure 4. Divergence time estimates among Sternopygus species. Results are based on 2217 bp of concatenated 
cox1, cytb and 16S with posterior probabilities from Bayesian Inference (BI) shown in grey, reconstructed using 
BEAST. Nodes are individually numbered, with gray bars indicating 95% confidence intervals on divergence 
time estimates (in My before present). Calibrated node is indicated with a black circle. Asterisks indicate that 
confidence interval bars are truncated.
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Overall, our analysis of population structure based on UCEs revealed two divergent clusters (without evidence 
for admixture) that corresponded to eastern (i.e., Chucunaque/Tuira) and western populations (Santa María, San 
Pablo and Tumaganti; Fig. 1B). Indeed, over 77% of UCE loci, distributed across 22 of 29 chromosomes of the 
channel catfish and across available scaffolds of the electric eel, contained SNPs differentially fixed between these 
two genetic clades (Fig. 2). In addition, the frequency distribution of FST estimates across the entire dataset was 
highly skewed toward large values (Fig. 2). Thus, our results are consistent with a pattern of genetic differentiation 
under strict geographic isolation (i.e., a model of allopatric divergence38) and suggest that S. dariensis is composed 
of two genetic lineages, likely representing incipient allopatric species.

tempo and mode of allopatric divergence in S. dariensis. Allopatric divergence in primary fresh-
water fishes, including weakly electric fishes, in the context of Lower Mesoamerica is often associated with mul-
tiple colonization events during the dynamic formation of the Isthmus of Panama6,12. However, we showed that 
substantial progress towards allopatric speciation could also occur in situ following the closure of the Isthmus. 
This was supported by our phylogenetic analysis, which indicated that the Isthmian populations of S. dariensis 
constitute a monophyletic group (Fig. 3), likely derived from the South American S. arenatus over 3 Ma ago 
(Fig. 4). Thus, allopatric divergence in S. dariensis is likely the result of a single colonization event, followed by 
segregation of populations via colonization and dispersal. In addition, our analyses of mitogenome sequences 
revealed that divergence between eastern and western populations of S. dariensis is substantial (2.8%; Table 2) 
when compared to divergence across established Sternopygus species (6.6% between S. dariensis and S. arenatus; 
Table 3). This suggests an early geographic split in the mitochondrial genome between these populations, which 
occurred ~1.1 Ma (Fig. 4).

The historical context of this divergence is consistent with a scenario of early divergence between populations 
from Tuira/Chucunaque and Tumaganti watersheds, followed by more recent dispersal from Tumaganti to the 
western watersheds (Santa María and San Pablo). This scenario could explain the low genetic variation across the 
three western populations (i.e., Tumaganti, Santa María and San Pablo), possibly due to a strong bottleneck (or 
founder effect) or a limited time for the accumulation of genetic differences39–41. This expansion and contraction 
of populations was likely facilitated by changes in sea level during the Pleistocene glaciation oscillations42. For 
instance, during periods of low sea level, large portions of the eastern Pacific seabed remained exposed43–45, 
likely facilitating the exchange of freshwater fishes between eastern and western watersheds39,44,46. By contrast, 
during periods of high sea level, riverine populations likely became spatially isolated due to the intrusion of sea-
water39,47,48. It is important to notice that analyses of behavioral and genetic incompatibility may be necessary to 
confirm if these allopatric populations represent reproductively isolated populations/species within S. dariensis. 
For example, previous studies on electric fishes have highlighted the role of the temporal (shape) properties of 
the EODs in maintaining prezygotic isolation and speciation49,50. Cytogenetic analyses have also been used to test 
for genetic incompatibility Gymnotiformes51,52. Overall, however, our findings indicate that substantial genetic 
divergence has accumulated within the Isthmus of Panama. This also suggests that the diversity of Sternopygus 
species might have been underestimated, possibly due to the existence of cryptic species across the Isthmian range 
of the genus.

Exploring the genetic consequences of allopatric divergence in S. dariensis. An expected con-
sequence of allopatric divergence is the accumulation of genetic differences across large portions of the species’ 
genome due to random drift38,53,54. However, allopatric divergence may also be affected by adaptive processes 
(e.g., local adaptation55,56), which might lead to genomic islands of divergence57,58. Distinguishing between these 
possibilities requires a large number of genetic markers that can be mapped across the genome59,60. Although our 
analysis only included a few individuals per population and a reduced representation of the species’ genome (285 
SNPs), the high number of fixed loci between populations, and the broad distribution of these loci across the 
majority of the species’ chromosomes, is consistent with a model of strict allopatric divergence38,53. In addition, 
the low number of loci under selection also points towards the role of non-adaptive processes as the predominant 
driver of divergence in S. dariensis. For instance, Picq et al.6 found sizeable evidence of the role of drift in EOD 
evolution. However, further work is needed to disentangle the contribution of both factors to in situ divergence 
in S. dariensis post-colonization of the Isthmus of Panama. This work could benefit from inclusion of additional 
sampling sites, and a larger number of individuals to examine genetic structure across the entire range of the 
species. In addition, future work should explore the geographic origins of S. dariensis in South America and its 
pattern of colonization of the Isthmus of Panama.

In summary, our results suggest that allopatric divergence in S. dariensis progressed in situ post-colonization 
of the Isthmus of Panama, and that genetic divergence is likely to occur widely across the species’ genome. Thus, 
our findings support the pattern of genetic differentiation expected under the classical model of allopatric diver-
gence. Although reproductive isolation between allopatric populations is difficult to determine in nature, we 
suggest that integrating UCEs and mitogenome data is a useful approach to assess the evolution of genetic incom-
patibilities between geographically isolated populations. Our findings also underscore the role of vicariance and 
spatial isolation in promoting diversification in weakly electric fishes. Although more work is needed to disentan-
gle the demographic and phylogeographic history of S. dariensis across its range, the study of spatially segregated 
populations within the context of the Isthmus of Panama could provide further insights into the accumulation of 
genetic differences that drive allopatric diversification in freshwater fishes.
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Methods
Taxon sampling and ethical statement. Fish were first detected using a wire electrode connected to a 
mini-amplifier (Radioshack, Fort Worth, TX), and then collected using a dip-net. Fish were then euthanized with 
an overdose of eugenol (C10H12O2) derived from clove oil. Twelve specimens of Sternopygus dariensis were col-
lected from four sites in the Republic of Panama (Fig. 1A): San Pablo River (SP: 8°11ʹ24ʺ N, −81°15ʹ0ʺ W), Santa 
María River (SM: 8°13ʹ50ʺ N, −80°58ʹ12ʺ W), Tumaganti River (TU: 9°13ʹ12ʺ N, −78°52ʹ47ʺ W) and Quebrada 
La Hoya stream, which flows into the Chucunaque River (PB: 8°15ʹ0ʺ N–77°43ʹ11ʺ W). Two individuals of 
Eigenmannia humboldtii were also sampled and used as outgroups in the phylogenetic analysis.

UCE library preparation and sequencing. We extracted DNA from frozen-preserved tissues following 
the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA.) protocol. We quantified all DNA extracts with a 
Qubit Fluorometer (Life Technologies, Inc.), assessed each extract for quality by electrophoresis, and then sheared 
extracts by sonication to a target size of 600 bp on a Covaris S220 instrument (Covaris, Woburn, Massachusetts, 
USA). Approximately, 500 ng of genomic DNA was used to prepare twelve 300 bp paired-end libraries, fol-
lowing the protocol Kapa Kit (New England Biolabs, Ipswich, MA, USA), and the UCE protocol described in 
Faircloth et al.61, available online from http://ultraconserved.org. We enriched libraries for UCE targets using 
Arbor Biosciences UCE Capture Kits (myBaits UCE Actinopterygians 0.5Kv1) designed to target 500 highly 
conserved loci across fishes. We determined the size of enriched and purified pools with a Bioanalyzer (Agilent 
Technologies, Inc.), and quantified enriched libraries by qPCR (Kapa Biosystems) prior to sequencing. Genomic 
libraries were multiplexed before sequencing 300 bp from both ends on the Illumina MiSeq platform at Naos 
Molecular Laboratory of the Smithsonian Tropical Research Institute (STRI), in Panama City, Panama.

UCEs bioinformatics. Raw sequence data were converted to FASTQ before demultiplexing, trimming and 
cleaning using Illumiprocessor62, which works with Trimmomatic63. We then followed the standard PHYLUCE64 
pipeline (http://phyluce.readthedocs.io/en/latest) for processing target-enriched UCEs data. Trinity version 
r2013-02-2565,66 was used to assemble reads using the script assemblo_trinity.py. We then used the match_ con-
tigs_to_probes.py script to map assembled contigs to the UCE probes, which allowed us to assemble contigs rep-
resenting enriched UCE loci from each species. We created two FASTA datasets: the first containing both the 
ingroup and outgroup taxa, and the second with only the ingroup, to increase the number of shared loci. We then 
followed the PHYLUCE pipeline to produce MAFFT67 alignments across all loci from both datasets. We removed 
locus names from each alignment, and created a complete dataset, with each locus containing data for all the indi-
viduals. Alignments of the first dataset (containing both ingroup and outgroup) were concatenated in PHYLIP 
format for subsequent analyses of phylogenetic structure (see below).

We chose the sample with the most UCE contigs recovered within the ingroup as reference sequence to call 
SNPs. We mapped reads (per individual) to this reference using the program BWA68. We converted SAM files 
to Binary Alignment Map (BAM) files format using the SAMtools69, and Picard (http://broadinstitute.github.
io/picard/) to identify and remove PCR duplicates. We added read groups for each individual using Picard, and 
merged the BAM files across individuals with the SAMtools. We used the Genome Analysis Toolkit (GATK; 
McKenna et al.70 to identify and realign indels, to call and annotate SNPs and indels, and to mask SNP calls 
around indels, following the population genomics pipeline for UCEs developed by Faircloth and Harvey (https://
github.com/mgharvey/seqcap_pop). This included restricting data to high-quality SNPs (Q30), and read-back 
phasing in GATK. At the end of the pipeline we created a Variant Call File (VCF) with nuclear SNPs. Finally, we 
used Python scripts from the seqcap_pop pipeline to convert the phased VCF into an input file for subsequent 
population analyses.

UCE analyses. To quantify phylogenetic structure across species (i.e., the first dataset), we performed unpar-
titioned concatenated maximum-likelihood (ML) analyses, using RAxML 8.0.1971. Support for the best ML topol-
ogy was assessed by performing 1000 nonparametric bootstraps in CIPRES Science Gateway72. For this analysis 
we used the GTR GAMMA site-rate substitution model for the best ML tree obtained from CIPRES Science 
Gateway72, using JModelTest 273.

To estimate population structure across S. dariensis populations, we used a Bayesian clustering algorithm 
as implemented in STRUCTURE 2.3.474. One random SNP from each locus was selected using the script struc-
ture_from_vcf.py (github.com/mgharvey/seqcap_pop) to create STRUCTURE input file, to minimize linkage dis-
equilibrium. The number of subpopulations (ΔK) was determined using the ad-hoc statistical method, based on 
the rate of change in the log probability of data between successive K values. Ten independent runs for K values 
ranging from 1 to 4 were performed with a burn-in length of 50,000, followed by 500,000 interactions. Best K 
results were analyzed on Structure Harvester75 and Clumpak76.

To further examine divergence across S. dariensis populations, we quantified the proportion of SNPs that 
were differentially fixed (FST)77 between the two major clades recovered from the STRUCTURE analysis (see 
results). These analyses were performed in the R package adegenet version 3.2.278,79, and was performed on the 
285 SNPs data set using the script adegent_from_vcf.py (github.com/mgharvey/seqcap_pop). To determine the 
genomic distribution of differentiated SNPs, we mapped each fixed SNP (UCE locus) to the available scaffolds of 
the electric eel, Electrophorus electricus80 genome using BLAST on SequenceServer (http://www.sequenceserver.
com) implemented in EFISH genomics (https://efishgenomics.integrativebiology.msu.edu/blast_search/). We 
also mapped the fixed SNPs to the channel catfish, Ictalurus punctatus81 chromosomes, using the NCBI Genome 
Workbench version 2.12.8. In cases in which we obtained multiple hits, we retained the hits with >90% sequence 
identity and the highest query coverage. Finally, to examine the pattern of genetic divergence between clades, we 
estimated the frequency distribution, including skewness, of FST values across the entire SNP dataset.

https://doi.org/10.1038/s41598-019-55336-y
http://ultraconserved.org
http://phyluce.readthedocs.io/en/latest
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://github.com/mgharvey/seqcap_pop
https://github.com/mgharvey/seqcap_pop
http://www.sequenceserver.com
http://www.sequenceserver.com
https://efishgenomics.integrativebiology.msu.edu/blast_search/
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Outlier analyses. We quantified outlier loci with two methods: BayeScan 233 and PCAdapt82. BayeScan uses 
differences in allele frequencies between populations, and estimates the probability that each locus is subject to 
selection using a Bayesian method. BayeScan was run under default settings. In PCAdapt, population structure 
is defined with PCA, and outliers are detected with respect to their contribution to population structure. Cattell’s 
graphical rule was used to choose the number of principal components (K) that identify potential SNPs under 
selection. Outliers were selected by performing the q-value procedure at a false discovery rate (FDR) of 0.05 
using the R package qvalue83. PCAdapt was run assuming three genetic clusters after graphical evaluation of the 
eigenvalues according to Luu et al.82. To account for population structure, we retained the first two PC axes that 
explained most variation. For both analyses, the input file was created using the previously generated VCF file, 
and it was converted to other formats, as needed, using PGD Spider84 for BayeScan and Plink v1.985 for PCAdapt.

Recovery of mitogenomes. We identified mitogenomes from UCEs off-target reads by following the same 
methodology described in Aguilar et al.34. The complete sequences of mitogenomes were annotated in Geneious 
version 11.1.486 using the complete mitochondrial genome sequence of S. dariensis (GenBank accession no. 
MH399590) as a reference.

Phylogenetic analyses of complete mitochondrial genomes. In order to compare mitochondrial 
gene sequences, we extracted the protein coding genes (nad6 and stop codons excluded). We aligned them using 
Multiple Alignment using Fast Fourier Transform (MAFFT)87 in Geneious version 11.1.486. Sternopygus arena-
tus88 and Eigenmannia sp. mitogenomes89 were used as outgroup (Table 1). We manually checked the alignments 
to correct for annotation errors based on consensus, and removed positions with long gaps, as well as regions with 
uncertain alignment, ambiguous portions and stop codons. A General Time Reversible (GTR) model, with a pro-
portion of invariable sites (I) and heterogeneity of substitution rates among sites using gamma distribution (G), 
was selected as the preferred model of nucleotide sequence evolution by jModelTest2 on XSEDE73, performed in 
the CIPRES Science Gateway72, with corrected Akaike information criterion (AIC). Maximum likelihood (ML) 
analyses were performed using RAxML. The resulting tree topology was evaluated by a rapid bootstrap analysis 
with 1000 replicates. Bayesian inference (BI) analyses were performed in MrBayes on XSEDE version 3.2.6 on 
CIPRES Science Gateway72. We ran two independent runs of 2,000,000 generations for each of the four chains. 
Each chain was sampled every 2000 generations with a burn-in of 25%. Trees inferred prior to stationarity were 
discarded as burn-in, and the remaining trees were constructed using a 50% majority-rule consensus tree with 
posterior probabilities.

We also assessed the evolutionary distance (uncorrected p-distance) among S. dariensis populations across 
all of the genes (concatenated) using uncorrected p-distances among unique haplotypes with MEGA version 790. 
In addition, we calculated pairwise distance across Sternopygus species (S. dariensis, S. arenatus, S. xingu and S. 
macrurus), using the cox1 gene. Standard error estimates were obtained by a 1000 bootstrap replicates under a 
maximum likelihood model91. Phylogenetic relationships between haplotypes were determined by constructing 
a Templeton, Crandall and Sing (TCS) haplotype network35 based on cox1 sequences in PopArt 1.7 (Population 
Analysis with Reticulate Trees92). One previously published cox1 (645 bp) sequence6 from Tuira River from 
Eastern Panama, was aligned independently to the newly generated mitogenomes.

Time to the most recent common ancestor. We estimated divergence time among populations and 
species using BEAST2 on XSEDE v2.4.893 on the CIPRES Science Gateway72 under a relaxed molecular clock 
with uncorrelated lognormal distribution of rates, to allow for lineage-specific rate variation, and using a Yule 
speciation model as tree prior. Sequences of cox1, cytb and 16S were concatenated on a 2217 bp alignment. 
Nucleotides were first grouped into four different partitions: the 1st, 2nd, and 3rd codon positions respectively for 
cox1 and cytb; and the 16S. Nucleotide substitution models were estimated for each partition using the Bayesian 
Information Criterion in Partition Finder94. The best-fit models for the three genes were TVM + I + G (for the 
16S region, and the 1st and 2nd codon positions), and the TRN + G (for the 3rd codon position of the coding 
genes). Bayesian posterior distributions of evolutionary rates were estimated using Markov Chain Monte Carlo 
(MCMC) procedure. Four independent MCMC chains were run for 4 × 107 generations and were sampled every 
1,000 generations, after discarding the first 20% as burn-in. We used TRACER version 1.695 to test for conver-
gence of the chains to the stationary distribution, which was determined by an effective size (ESS) of over 20095. 
The four independent runs were combined using LogCombiner v1.8, and the dates of divergence along with their 
95% confidence intervals (HPD) were estimated using Tracer v1.6. The resulting phylogeny and the 95% HPD for 
the dates of divergence for the major clades were visualized using FigTree v1.496.

To calibrate the molecular clock, we used a fossil of Humboldtichthys kirschbaumi dated to c. 10 Ma, which 
shares morphological characters (i.e., opercle) with extant Sternopygus species97. The fossil age was placed on 
the stem node of the genus Sternopygus, using an uniform prior distribution with a maximum age equal to the 
maximum tree root height, following Picq et al.6. We used the three sequences (cox1, cytb and 16S) to include 
all Sternopygus species available in Genbank and four genera of Gymnotiformes as outgroups (Supplementary 
Table S2).

Ethics statement. Sampling permit was obtained from the Panamanian Ministry of Environment (Permit 
number SE/A-100-14). This research was approved by the Institutional Animal Care and Use Committee 
(IACUC) at the Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), and all 
methods were performed according to the guidelines and regulations of the approved protocol (IACUC-16-001).
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