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Abstract

The microbiome plays a key role in the biology, ecology and evolution of arthropod vectors

of human pathogens. Vector-bacterial interactions could alter disease transmission dynam-

ics through modulating pathogen replication and/or vector fitness. Nonetheless, our under-

standing of the factors shaping the bacterial community in arthropod vectors is incomplete.

Using large-scale 16S amplicon sequencing, we examine how habitat disturbance struc-

tures the bacterial assemblages of field-collected whole-body hematophagous arthropods

that vector human pathogens including mosquitoes (Culicidae), sand flies (Psychodidae),

biting midges (Ceratopogonidae) and hard ticks (Ixodidae). We found that all comparisons

of the bacterial community among species yielded statistically significant differences, but a

difference was not observed between adults and nymphs of the hard tick, Haemaphysalis

juxtakochi. While Culicoides species had the most distinct bacterial community among dip-

terans, tick species were composed of entirely different bacterial OTU’s. We observed dif-

ferences in the proportions of some bacterial types between pristine and disturbed habitats

for Coquillettidia mosquitoes, Culex mosquitoes, and Lutzomyia sand flies, but their associ-

ations differed within and among arthropod assemblages. In contrast, habitat quality was a

poor predictor of differences in bacterial classes for Culicoides biting midges and hard tick

species. In general, similarities in the bacterial communities among hematophagous arthro-

pods could be explained by their phylogenetic relatedness, although intraspecific variation

seems influenced by habitat disturbance.

Introduction

Bacterial communities are important components of hematophagous arthropods (e.g., blood

feeders) vectoring disease-causing pathogens to humans and wildlife, and they are likely to
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play a key role in vector ecology, evolution and transmission capacity [1–4]. Several important

human and animal diseases result from bacterial infection transmitted through the bite of

arthropod vectors [5,6]. Bacteria also interact with the arthropod host to reduce or increase the

transmission of pathogens or indirectly alter disease dynamics through the modification of

nutrition [7], development, reproduction or the immune response of arthropod vectors [8,9].

Our understanding of the factors shaping the organization of bacterial communities in hema-

tophagous arthropods vectoring human diseases is still limited. Studies regarding the micro-

biome of disease vectors have attempted to describe the structure and bacterial composition of

specific taxonomic groups of arthropods, and to understand how it varies according to partic-

ular ecological or physiological factors, with the most comprehensive studies focused on mos-

quitoes [10] and ticks [2]. Although some studies have considered the impact of habitat or

environment type on arthropod microbiota in mosquitoes [11–16], ticks [17–20] and biting

midges [21], none to date have investigated the role of habitat disturbance in shaping bacterial

assemblages among co-distributed hematophagous arthropods.

Mosquitoes (Diptera: Culicidae), sand flies (Diptera: Psychodidae), biting midges (Diptera:

Ceratopogonidae) and hard ticks (Acari: Ixodidae) are collectively responsible for numerous

medically important diseases worldwide, including arthropod-borne viruses (e.g., arboviruses)

transmitted to humans (Dengue–DENV, chikungunya—CHIKV, Zika—ZIKV, Yellow Fever–

YFV, West Nile–WNV, Mayaro and Oropuche) and to agriculturally important livestock

(Vesicular Stomatitis–VSV, Blue-Tongue–BTV, Epizootic Hemorrhagic Disease–EHDV and

African Horse Sickness–AHSV) or to both (Venezuelan Equine Encephalitis–VEEV, Eastern

Equine Encephalitis–EEEV and Rift Valley Fever) [22,23]. In addition, some species in these

arthropod assemblages are involved in the transmission of parasites such as filarial nematodes

(Mansonella—filariasis) [24], protozoan (Leishmania—Leishmaniasis) [25] and bacteria (Rick-
ettsia—Lyme disease and babesiosis) [26].

The ability of hematophagous arthropods to carry and transmit pathogens biologically is

given by their population dynamics and feeding behaviour in relation to that of their vertebrate

host, plus their immune responses to infection [9,27]. Some bacterial commensals impact the

capacity of arthropods as biological vectors, through diminishing pathogen replication and

dissemination in the host tissues or by reducing vector fitness and lifespan [4,9,28,29]. Studies

from members of the Culicidae demonstrate the importance of the microbiome in modulating

disease transmission. For example, Chromobacterium, Proteus and Paenibacillus bacteria can

inhibit DENV replication in mosquitoes while the resident bacteria are required for its estab-

lishment [28]. Furthermore, the intracellular bacteriumWolbachia is known to adversely

influence the transmission of DENV, CHIKV, ZIKV, YFV and WNV [30–35]. Alternatively,

some bacteria are associated with an increase in disease transmission by their arthropod vec-

tors. For example, members of Enterobacteriae are correlated with higher Plasmodium infec-

tion rates in Anophelesmosquitoes, while Serratia odorifera can increase the replication of

both DENV and CHIKV in the midgut of Aedes aegypti [28,36]. Although, studies have

endeavored to characterize the core microbiome of members of Psychodidae sand flies, Cera-

topogonidae biting midges and Ixodidae hard ticks, it is still generally unknown how similar

or different their microbiomes are, and whether some bacteria may influence disease transmis-

sion dynamics in these arthropod assemblages [18,19,21,37–42]. Nonetheless, some studies

have revealed that resident bacteria are essential for the development of Leishmania parasite in

Psychodidae through antibiotic treatment [37,43].

Metagenomic studies of disease vectors in the Order Diptera have revealed that different

genera including those with a distinct ecology generally share a core microbiome, but often

exhibit differences in bacterial composition and structure that distinguish a species

[1,13,38,44–46]. Conversely, tick species may exhibit a distinct taxonomic structure in their

Bacterial associates of blood-feeding arthropods
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microbiome, because they are associated with specific vertebrate hosts throughout their entire

lifetime, including during the immature stages [47]. Core microbiota of Diptera are largely

acquired from the environment during the immature stages, many of which persist until the

adult stage [13,48–50]. Bacteria are also acquired during adult blood feeding, therefore the

microbiome of arthropod vectors is likely impacted by both developmental stage and gender

[1,19,49,51]. The core microbiota of ticks is either maternally-inherited, acquired from blood

feeding on hosts or through the colonization of environmental microorganisms from verte-

brate skin or the soil on physical contact [2,52].

Hematophagous arthropods can exhibit intra-specific variation in their bacterial associates

between geographic locations, explained by differences in the quality of larval habitats or host

preferences at sampling sites for both Diptera [11,37,46,53] and ticks [17,18]. Hence, it has

been proposed that larval habitat conditions and geographic location are important factors

shaping the bacterial community of some adult hematophagous arthropods. Conversely, some

mosquitoes [44] and ticks [54] do not exhibit intra-specific variation in the bacterial commu-

nity across geographical locations or habitats. This finding supports a more specific and long

term association between some blood-feeding arthropods and their bacterial associates, which

is likely mediated by the immune system of the host, rather than by their external environment

[13,54].

Our goal herein is to test for variation in the diversity of bacteria among four epidemiologi-

cally discrete groups of hematophagous arthropods, and to identify the factors shaping this

variation. Specifically, we address the following questions: (1)How do patterns of bacterial
diversity and composition differ among the microbiomes of mosquitoes, biting midges, sand flies
and hard ticks?, and (2) Does habitat disturbance influence the organization of bacterial commu-
nities within these arthropod assemblages? We posit that blood-feeding arthropod species in

the Order Diptera will harbor comparable bacterial organizations, since they are more closely

phylogenetically related, while hard ticks within the Order Ixodida are considered as an out-

group. We also postulate that intra-specific bacterial diversity and taxa composition will

change owing to variation in habitat quality, but changes are only expected within Culicidae

mosquitoes, Psychodidae sand flies and Ceratopogonidae biting midges. This is anticipated

because host–tick interactions in obligated ectoparasites such as hard ticks are more likely to

shape their microbiome than habitat disturbance. Although hard ticks can acquire surface

microbiota from their environment, our study largely targets intracellular and gut bacteria col-

onized through vertical transmission or ingestation. We use a metabarcoding approach to

compare inter-and intra- group bacterial communities among these arthropod assemblages,

and also in relation to changes in habitat quality. If habitat disturbance is a significant predic-

tor of bacterial assemblages, this could have ramifications for disease transmission through

variation of the vector microbiome and correlated vectorial capacity.

Materials and methods

Arthropod collection and sample preparation

Permission was obtained from MiAmbiente under permit identification ID 8-447-900-PAN.

The study was conducted in the lowland tropical rainforest ecosystem of central Panama, a

region formerly known as the Panama Canal Zone. Adult specimens of mosquitoes, sand flies,

biting midges and hard ticks were gathered from three forested areas that varied in their levels

of anthropogenic disturbance and original habitat quality. These included a pristine site, Barro

Colorado Island (BCI), which is comprised of old-growth forest with low levels of disturbance

(e.g., >65% forest cover). In addition, two disturbed forest sites, Achiote (ACH) and Las Pavas

(PVAS), encompass patches of secondary-growth forest subject to intermediate and high levels

Bacterial associates of blood-feeding arthropods
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of disturbance (e.g., >35% and<65% forest cover) respectively [55,56]. Dipterans were col-

lected using six Center for Disease Control (CDC) miniature light traps (John W. Hock Com-

pany, Gainesville, Florida), operating overnight in the understory (1.5 m height) and six in the

canopy (> 25 m height), alternating each night. Each trap was situated along a transect and

spaced at least 300 meters apart from each other to avoid pseudoreplication as in Loaiza et al.
[55,57]. They were baited with 0.5 pounds of dry ice to attract blood-seeking dipterans. Adult

specimens were retrieved from the traps at sunrise and taken to the laboratory in a portable

freezer container holding dry ice. Individuals were sorted and identified using a chill table and

taxonomic keys [58–62].

Ixodid ticks were collected with two methods at BCI and PVAS: the standard tick-dragging

technique [63], and a pair of home-made cloth-pants, fabricated with white rustic fabric. Two

human collectors traversed linear transects of up to 200 meters through the vegetation using

either method. Adult specimens were removed from the cloth with entomological forceps,

while immature stages (e.g., larvae and nymphs) were detached using transparent adhesive

tape. Individuals were placed in separate cryo-vials, and subsequently transported to the labo-

ratory. Taxonomic characters were used to identify ticks to the species level [64,65]. The sam-

ples were washed with 70% ethanol to remove surface contamination before storage in 95%

ethanol. Details on the number of samples processed from each site and for each species are

provided in S1 Table.

DNA extraction, 16S rRNA gene library and sequencing

Each arthropod species was processed using the following laboratory procedures indepen-

dently. Each sample was rinsed in 70% ethanol before they were pooled. DNA was isolated

from pools of adult female dipterans and both adults and immature ticks using a BioSprint 96

robot and associated BioSprint1 96 DNA Blood kit (Qiagen, Gaithersburg, MD, USA). Each

pool was crushed individually in tissue lysis buffer using a high-speed shaking TissueLyser II

and ceramic beads; the supernatant was placed in a well of a 96-well plate and followed by

DNA isolation protocol from the manufacturer. DNA pools were made by combining 2 μl of

DNA extract from 20 to 35 individuals of sand flies and biting midges, plus up to 5 individuals

per pool of mosquitoes and ticks. Pooled DNA was used as a template to amplify the V4 region

of the 16S rRNA locus using a two-step PCR protocol. The first PCR was composed of 5 μl of

2X Maxima HotStart PCR Master Mix (Thermo), 0.2 μl of each primer (which included an

Illumina sequencing primer on the 5’ end (10 mM)), and 1 μl of pooled DNA. Then 1 μl of the

resulting PCR product was used to add on unique barcodes and Illumina sequencing adaptors

in a second PCR of six cycles. The PCR cycling conditions had an initial denaturation step of 3

min at 94˚ C proceeding 25 cycles of 94˚C for 45 sec, 50˚C for 60 sec, and 72˚C for 90 sec, fol-

lowed by 10 min at 72˚C extension. Resulting reactions were cleaned using PCR Normaliza-

tion plates (Charm Biotech, San Diego, CA, USA) and samples pooled into a library which we

concentrated using Kapa magnetic beads. The DNA concentration of each library was verified

with the Qubit HS assay (Invitrogen, Waltham, MA, USA) and quality checked with a Bioana-

lyzer dsDNA High Sensitivity assay before sequencing on an Illumina MiSeq in a 2x250 paired

end run. In the Culicidae family (mosquitoes), 40 pools of adult Culex including 20 pools of

each Culex coronator and Culex declarator plus 20 pools of Coquillettidia venezuelensis were

sequenced. Within the Ceratopogonidae (biting midges) and Psychodidae (sand flies), 94

pools of adult Culicoides including 34 pools of Culicoides batesi, 30 of Culicoides foxi, and 30 of

Culicoides heliconiae, plus 75 pools of adult Lutzomyia including 30 pools of Lutzomyia pana-
mensis, 23 of Lutzomyia gomezi and 22 of Lutzomyia trapidoi were sequenced and analyzed.

Sequences within the hard tick family Ixodidae were obtained from 37 pools in total, including

Bacterial associates of blood-feeding arthropods
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6 pools of adults and 12 pools of nymphs ofHaemaphysalis juxtakochi, 12 pools of adult

Amblyomma tapirellum and 7 pools of adult of Amblyomma oblongoguttatum (S1 Table).

Analysis of 16S metadata

Analysis of sequence reads was performed using the Quantitative Insights Into Microbial Ecol-

ogy (QIIME) software package versions 1.9.1 and 2.0. The DADA2 data quality filtering pipe-

line implemented in QIIME 2.0 was used to trim sequences with base quality scores lower than

20. Operational taxonomic units (OTU’s) were assigned with a Naive Bayes classifier trained

on the Greengenes 99% sequence similarity database v13.8 with sequences bound by the 515F

and 806R primer pair [66]. Low abundance OTU’s (0.005%) were filtered from the resulting

relative abundance table to reduce bias by sequencing error.

The feature table was rarefied to a sequencing depth of 7 000 reads before alpha and beta

diversity values were calculated. The statistical test PERMANOVA was applied to the resulting

UNIFRAC distance matrixes to test for significant differences between the beta diversity of

metadata groups. Principle coordinates analysis (PCoA) plots were generated from

unweighted UNIFRAC distance matrixes. In addition, taxonomic summary plots of the rela-

tive abundance of bacteria were generated to depict the bacterial orders with an overall propor-

tion of> 0.1% in at least one species. Indicator species analysis was applied to identify the

OTU’s unique to each species group.

Results

In total, 11 435 639 sequence reads of the bacterial 16S gene were captured from 265 sample

pools, encompassing 4 916 individuals from four different hematophagous arthropod families,

six genera and 12 species. After quality filtering and rarefaction to a depth of 7 000 reads, 10

838 632 sequences remained from 229 sample pools with an average of 40 900 sequences per

pool (SE ± 1,209) and a total of 1 404 OTU’s composed of 13 phyla, 30 classes, 55 orders, 106

families and 137 genera. Rarefaction curves revealed that the majority of bacterial diversity for

all the species of arthropods was captured with subsampling of 7 000 sequences per sample

pool (S1 Fig).

Bacterial diversity and composition in mosquitoes, biting midges, sand

flies and hard ticks

Among dipterans, members of the genera Culex, Coquillettidia, Culicoides and Lutzomyia had

comparable proportions of bacterial OTU’s, bacterial diversity and community evenness

index. In contrast, two tick species in the genus Amblyomma (i.e., Amblyomma tapirellum and

Amblyomma oblongoguttatum) had higher number of OTU’s, and bacterial diversity, and the

least even community composition. A third tick species,Haemaphysalis juxtakochi, had the

highest overall bacterial phylogenetic diversity, although it had a lower number of OTU’s per

tick pool and values of Shannon’s diversity compared to Amblyomma species (Table 1 and S1

Fig).

All arthropod species were dominated by the phylum Proteobacteria with proportions

ranging from 48 to 72%. Other major bacteria phyla that were shared among all arthropod spe-

cies included Firmicutes, Bacteriodetes and Actinobacteria. Bacterial Orders and families were

generally shared among arthropod genera in the Order Diptera, although they also exhibited

notable differences in their relative proportions, which are visualized to the level of Order in

Fig 1 and summarised to the genus level in S2 Table. Within the bacterial phyla shared between

Culex and Coquillettidiamosquitoes, Culicoides biting midges, and Lutzomyia sand flies, the

Bacterial associates of blood-feeding arthropods
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major classes consisted of Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria,

Bacilli, and Actinobacteria.

Culicoides species share OTU’s with the other genera of dipterans, but PCA and taxonomic

analysis revealed that they have a more distinct bacterial community than Lutzomyia, Culex
and Coquillettidia together with unique bacterial types including a disease-causing agent in the

genus Arcobacter (proteobacterial class Epsilonproteobacteria, Order Campylobacterales)

[67], and Candidatus cardinium (phylum of Bacteriodetes, class Cytophagia), which is known

Table 1. Average measures of bacterial alpha diversity for 12 species of blood-feeding arthropods at a rarefaction depth of 7 000 16S sequences.

Taxonomy Species Observed OTU’s Shannon’s diversity Faith’s phylogenetic diversity Evenness

Acari:Ixodidae H. juxtakochi 43.12 3.51 14.12 0.66

Adults 55.71 3.39 11.65 0.69

Nymphs 34.3 7.12 11.28 0.94

A. tapirellum 194.82 7.15 11.43 0.95

A. oblongoguttatum 144.75 5.64 11.5 0.81

Diptera:Culicidae Coq. venezuelensis 53.35 3.67 5.83 0.65

Cux. coronator 49.7 3.64 5.91 0.65

Cux. declarator 49.2 3.29 6.39 0.59

Diptera:Ceratopogonidae C. batesi 59.38 4.03 7.13 0.69

C. foxi 61.73 3.93 7.18 0.67

C. heliconiae 56.15 3.63 6.81 0.63

Diptera:Psychodidae Lu. gomezi 55.04 2.99 7.1 0.52

Lu. panamensis 62.97 3.59 6.85 0.61

Lu. trapidoi 43.59 2.86 5.76 0.54

https://doi.org/10.1371/journal.pone.0222145.t001

Fig 1. Relative abundances of bacterial orders above 0.1% summarized for each blood-feeding arthropod species.

https://doi.org/10.1371/journal.pone.0222145.g001
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to alter arthropod reproduction [68]. Moreover, Culicoides batesi, Culicoides foxi and Lutzo-
myia trapidoi had unique OTU’s in the phyla Chlamydiae.

The bacterial phyla and classes of all tick species were composed of entirely different

OTU’s than the other arthropod assemblages, hence they were the most distinct in terms of

bacterial composition (Fig 2). Ticks in the genus Amblyomma had bacterial phyla that were

not found in any other arthropod genus, including Chloroflexi, Acidobacteria, Gemmati-

monadetes, Armatimonadetes and TM7. Likewise, Amblyomma ticks had a number of clas-

ses unique to this genus, including the Protobacterium Deltaproteobacteria, Saprospirae,

Cytophagia within the phylum of Bacteriodetes, and the Actinobacteria Thermoleophilia

and Acidimicrobiia. A. tapirellum had the largest proportion (14.7%) of OTU’s unique to its

species (Fig 3).

All comparisons of the bacterial community among the different genera and species of

adult hematophagous arthropods through PERMANOVA tests yielded statistically significant

differences (Table 2). Additionally, there were no statistically significant differences between

the adults and nymphs ofH. juxtakochi based on UNIFRAC distances of bacterial OTU’s

(PERMANOVA, pseudo-F = 1.38, P = 0.247), although they share only 80 OTU’s (25%). Vari-

ation in the number of OTU’s shared among the different arthropod species are visualized in

Fig 3. Arthropods within the same genus shared between ~33 to 50% of OTU’s while a smaller

proportion were unique to each species (between 2 to 20%). The taxonomy of indicator OTU’s

for each arthropod species in this study identified as significant and with an indicator value

over 0.25 are provided in S3 Table.

Fig 2. PCoA ordination analysis based on UNIFRAC distances with 16S gene sequence variation of the bacterial

communities from six blood-feeding arthropod genera.

https://doi.org/10.1371/journal.pone.0222145.g002
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Effect of habitat disturbance on the organization of bacterial communities

Intra-specific variation in the bacterial community was observed between sampling areas

depicting different degrees of habitat disturbance for Coquillettidia, one Culex species, and all

but one comparison of Lutzomyia, while another comparison between Culex coronator was

close to significant (Table 3). Although bacterial diversity was comparable across pristine

and disturbed habitats for most groups overall (S4 Table), we observed differences in the

Fig 3. Venn diagram of shared and unique bacterial OTU’s among (a) three different species of Ixodidae; (b) two species of Culex (Culicidae)

and one species of Coquillettidia (Culicidae); (c) three species of Culicoides (Ceratopogonidae); (d) three species of Lutzmyia (Psychodidae).

https://doi.org/10.1371/journal.pone.0222145.g003
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proportions of a number of bacterial types between pristine and disturbed habitats, although

their associations differed within and among arthropod genera and species (Fig 4). For exam-

ple, there was a high proportion of Cyanobacteria in both Coquillettidia and Lutzomyia from

the disturbed sites at ACH and PVAS as well as an increased proportion of Chlamydiae for

both Culex and Lutzomyia from the most disturbed site at PVAS. Similarly, there was an

increased proportion of Betaproteobacteria, Order Burkholderias and the Flavobacteriia, family

Blattabacteriaceae in pools of Culex from PVAS. Proportions of Actinobacteria, Bacteriodetes,
Flavobacteria and Bacteroidia increased in Luztomyia from disturbed sites, whereas the pro-

portion of Deltaproteobacteria increased from the pristine site BCI. Moreover, a number of

bacterial classes including Nostococidae, Deltaproteobacteria, Deincoccci, Cytophagia and

Chloroplast were found in Coquillettidia from the intermediately disturbed site at ACH, but

not in the most disturbed site at PVAS. In contrast, within the three species of ticks, there was

no difference in the proportion of bacterial classes between sampling areas or sampling

method (Table 3, S4 Table and Fig 4). Similarly, no strong differences were detected in the bac-

terial classes of Culicoides among sampling areas or between vertical strata (i.e., forest under-

story or canopy) (Table 3 and S5 Table).

Table 2. Results of PERMANOVA test for the comparison of bacterial OTU’s among pools of six different genera and 10 different species (with within genera com-

parisons) of blood-feeding arthropods based on unweighted UNIFRAC distances.

Genera comparisons No. No. of sample pools pseudo-F p-value q-value

Amblyomma Coquilettidia 195 39 77.076 0.001 0.001

Amblyomma Culex 295 59 95.687 0.001 0.001

Amblyomma Culicoides 2669 113 126.282 0.001 0.001

Amblyomma Haemaphysalis 180 36 82.764 0.001 0.001

Amblyomma Lutzomyia 2137 94 94.831 0.001 0.001

Coquilettidia Culex 300 60 4.267 0.002 0.002

Coquilettidia Culicoides 2674 114 17.305 0.001 0.001

Coquilettidia Haemaphysalis 185 37 69.818 0.001 0.001

Coquilettidia Lutzomyia 2142 95 10.184 0.001 0.001

Culex Culicoides 2774 134 39.82 0.001 0.001

Culex Haemaphysalis 285 57 86.494 0.001 0.001

Culex Lutzomyia 2242 115 23.658 0.001 0.001

Culicoides Haemaphysalis 2574 111 113.82 0.001 0.001

Culicoides Lutzomyia 4616 169 25.43 0.001 0.001

Haemaphysalis Lutzomyia 2127 92 85.509 0.001 0.001

Species comparisons

A. oblongoguttatum A. tapirellum 85 19 10.489 0.001 0.001

Cux. coronator Cux. declarator 200 40 2.099 0.025 0.026

C. batesi C. foxi 1825 64 1.499 0.102 0.102

C. batesi C. heliconiae 1715 64 2.159 0.012 0.013

C. foxi C. heliconiae 1608 60 1.611 0.064 0.065

Lu. gomezi Lu. panamensis 1419 53 9.881 0.001 0.001

Lu. gomezi Lu. trapidoi 1253 45 8.12 0.001 0.001

Lu. panamensis Lu. trapidoi 1412 52 7.3 0.001 0.001

Life Stage comparisons

Haemaphysalis adults Haemaphysalis nymphs 85 17 1.38 0.247 0.247

https://doi.org/10.1371/journal.pone.0222145.t002
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Discussion

Habitat disturbance resulting from land use change can alter arthropod-borne disease trans-

mission dynamics by modifying the habitat characteristics, community composition, behav-

iour, and patterns of dispersal and distribution of vectors or hosts [55,69,70]. Furthermore,

habitat disruption can also modify the bacterial composition of natural environments, such as

in the case of soil microbiota [71]. Yet, to our knowledge, no study has looked at the influence

of habitat disturbance on the microbiome of human disease vectors, especially those that

develop and interact with bacteria in the water, leaf litter, and soil or are acquired through ani-

mal host feeding in ecologically altered areas.

We tackled this issue by assessing bacterial communities associated with blood-feeding

arthropods across sites with different degrees of habitat disturbance in the lowland tropical

rainforest of central Panama. Specifically, we applied a 16S gene bacterial metagenomic

approach to evaluate whether variation in the microbiome is associated with taxonomic relat-

edness, habitat disturbance or a combination of both. We focused on adults of Culicidae mos-

quitoes (i.e., Culex and Coquillettidia), Psychodidae sand flies (i.e., Lutzomyia) and

Ceratopogonidae biting midges (i.e, Culicoides), which share ecological similarities in their

development and adult life stages. Both Culex and Coquillettidiamosquitoes develop in aquatic

sites associated with the roots of floating plants, while members of Culicoides develop in damp

soil, water and organic matter [13,72–74]. All species of Lutzomyia develop in the soil within

dark and humid places such as burrows and crevices associated with abundant leaf-litter or

Table 3. Results of PERMANOVA test for the comparison of bacterial communities in pools of twelve different blood-feeding arthropod species among sampling

areas based on unweighted UNIFRAC distances and 999 permutations. Significant results are highlighted in bold.

Taxonomy Species Site comparison No. of sample pools pseudo-F p-value q-value

Diptera:Culicidae Coq. venezuelensis ACH PVS 20 6.920 0.001 0.001

Cux. coronator ACH PVS 20 2.042 0.055 0.055

Cux. declarator ACH PVS 20 3.061 0.001 0.001

Diptera:Ceratopogonidae C. batesi ACH BCI 23 1.797 0.092 0.100

ACH PVS 22 2.229 0.027 0.081

BCI PVS 23 1.529 0.100 0.100

C. foxi ACH BCI 20 1.627 0.087 0.131

ACH PVS 20 1.363 0.196 0.196

BCI PVS 20 1.882 0.041 0.123

C. heliconiae ACH BCI 15 1.120 0.356 0.534

ACH PVS 15 2.104 0.041 0.123

BCI PVS 10 0.868 0.630 0.630

Diptera:Psychodidae Lu. gomezi ACH BCI 13 5.341 0.005 0.006

ACH PVS 20 2.709 0.002 0.006

BCI PVS 13 3.311 0.006 0.006

Lu. panamensis ACH BCI 20 3.033 0.002 0.005

ACH PVS 20 1.581 0.070 0.070

BCI PVS 20 2.645 0.003 0.005

Lu. trapidoi ACH BCI 13 2.936 0.004 0.005

ACH PVS 19 3.107 0.002 0.005

BCI PVS 12 3.458 0.005 0.005

Acari:Ixodidae H. juxtakochi BCI PVAS 17 0.254 0.918 0.918

A. tapirellum BCI PVAS 12 1.584 0.157 0.157

A. oblongoguttatum BCI PVAS 7 2.006 0.133 0.133

https://doi.org/10.1371/journal.pone.0222145.t003
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decomposing organic matter [75]. The males of Culex, Coquillettidia, Culicoides and Lutzo-
myia feed on nectar while the females take blood from a wide range of bird and mammal

hosts. In addition, we sampled both nymphs and adult Ixodidae (i.e., Amblyomma, Ixodes,
Haemaphysalis), which are distinct in their ecology compared to dipterans. Both the nymphs

and adults of hard ticks adhere to and feed on vertebrate hosts throughout their lifetime [76].

Although they spend time off their host to molt through the different life stages and “quest” for

a new host, they do not depend on these environments for feeding.

Our results are generally similar to those obtained in previous studies, where arthropod vec-

tors species were dominated by Proteobacteria, including Gammaproteobacteria, Betaproteo-
bacteria, Alphaproteobacteria, and to a lesser extent by Firmicutes, commonly Bacilli and

Actinobacteria [13,18,44–46,77,78], These groups included bacterial genera previously

described for Culex [13,44,46,77], Culicoides [21,38], Lutzomyia [37,79],Haemaphysalis
[78,80] and Amblyomma [42,81].

We found that mosquitoes, biting midges and sand flies share a large proportion of their

bacteria but statistical analysis also revealed significant differences in the OTU composition of

each genera and species. It should be noted that variability at the 16S rRNA region, primer

affinity and composition of the bacterial database will influence the resolution of the between-

species comparisons based on OTU’s [82]. However, this finding suggests that these arthro-

pods might encounter distinct bacterial types associated with differences in their habitat use or

diet. Also, the colonization success of these bacterial types could differ among the arthropod

hosts. We found that all tick species shared some bacterial OTU’s, but that this association did

not extend to the dipteran assemblages. This is likely to reflect both their degree of taxonomic

relatedness, since phylogenetically related species tend to share similar functional micro-

biomes [83], but also their distinct ecology. For instance, while all dipteran genera undergo lar-

val development in either aquatic sites or organic soil before blood feeding as adults, hard ticks

are largely associated with their host throughout their lifetime. Ticks undergo a series of molt-

ing events after each blood meal, which could be obtained from a series of animal hosts, from

which they are expected to acquire much of their microbiome [80], while some symbiotic bac-

teria are also maternally inherited [2]. In contrast, dipteran genera also acquire bacteria

through blood feeding, but their microbial community maintained through to adulthood is

largely acquired during larval feeding and contact with the physical environment [13,48,49].

We observed significant differences in the bacterial community among areas with different

degrees of habitat disturbance for two ecologically similar mosquito species within Culex and

Coquillettidia, and three Lutzomyia sand fly species. These differences could be related to

changes in the mammal or bird communities that served as feeding choices for adult arthro-

pods as a result of habitat disruption. Alternatively, intra-specific differences could also result

from changes to the pool of environmental bacteria, which might be associated with habitat

disturbance. In support of these assumptions, we observed differences in a number of environ-

mentally associated bacteria between primary forest, secondary forest and agricultural land,

although changes in specific bacterial types generally vary among the different arthropod

assemblages. For instance, the Cyanobacteria nostococidae, which has previously been associ-

ated with aquatic environments inhabited by mosquito larvae [13], was present in both Culex
and Lutzomyia collected from secondary forest and disturbed habitats, but not from pristine

forest sites. In addition, it was more common for Culex and Lutzomyia to be associated with

Chlamydia in secondary forest and disturbed pastureland than in pristine forest, suggesting

either differences in the mammal host reservoir or increased infection of mammals associated

with changes in habitat quality.

We did not observe a significant difference in the bacterial community for any Culicoides
species as a function of habitat disturbance. A potential explanation for this outcome is that
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Culicoides species either share a narrow ecological niche or because their optimal breeding

habitats are not impacted by habitat disturbance. Cuilicoides regularly develop in areas with a

high degree of organic matter known to modulate bacterial diversity [84], and are sensitive to

temperature and humidity [85]. Nonetheless, the bacterial community of Culicoides in their

preferred breeding sites has thus far been poorly characterized. Characterization of the differ-

ences in microhabitat features in Culicoides between land use types is required to confirm

whether their breeding habitats and associated microbiota remain stable despite habitat distur-

bance. Furthermore, the host preferences of Culicoides, including the species in the current

study are poorly classified and generally unknown within natural habitats, but some studies

showed that most Culicoides species are opportunistic feeders, while others specialize on birds

or mammals [86,87]. Another explanation for the lack of differences in the bacterial commu-

nity of Culicoides between sites could be a stricter association of bacteria with the insect host

than for other dipterans. That we did not see significant intra-specific differences in the bacte-

rial community among tick species across areas with different habitat quality is not surprising

given their specialized ecology [88].

We identified OTUs of several disease-causing bacteria as well as bacteria thought to alter

life history characteristics and/or viral replication in all the arthropod genera, although these

could not be identified to species. For example, we amplified Coxiella, whose members cause

Q fever from all three tick species, Ehrlichia which causes ehrlichiosis infection from A. tapirel-
lum and Rickettsia from A. oblongoguttatum andH. juxtakochi, which causes a variety of bacte-

rial infections in humans and animals [89]. In addition, Rickettsia was also identified from Lu.

trapidoi while Bartonella was detected from Lu. panamensis and Lu. gomezi plus all three spe-

cies of Culicoides.
Rickettsia rickettsii, known to cause Rocky Mountain spotted fever in Panama has been pre-

viously isolated from Amblyomma mixtum, Dermacentor nitens andHaemaphysalis

Fig 4. Relative abundances of bacterial classes summarized for (A) dipteran species and (B) hard ticks gathered from BCI (i.e., Pristine), ACH (i.e.,

intermediately disturbed) and PVAS (i.e., highly disturbed).

https://doi.org/10.1371/journal.pone.0222145.g004
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leporispalustris. In addition, two other Rickettsia species have been isolated from ticks in Pan-

ama including Rickettsia bellii from Amblyomma rotundatum and Rickettsia amblyommii
from A.mixtum [90]. Although identification of the RickettsiaOTU’s were not to species level

in this study, to our knowledge, this is first record of Rickettsia isolated from A. oblongogutta-
tum and H. juxtakochi in Central America as well as from Lutzomyia spp. However, agents

causing bartonellosis have not yet been described from Culicoides biting midges. The ability of

Culicoides to vector Bartonella requires further confirmation, but its presence in all three spe-

cies is suggestive of a likely transmission role in Panama.

Congruently, we found several genera of bacteria with the potential to impact vector patho-

gen transmission. For instance, the genus Paenibacillus, which can inhibit DENV replication

in Aedesmosquitoes was present in all Culicoides species as well as in Lu. panamensis [28].

Similarly, Serratia which can increase DENV and CHIKV in Ae. aegyptimosquitoes was pres-

ent in all species of biting midges, mosquitoes and sand flies [28]. The family Enterobacteriae,
which has been known to increase Plasmodium parasite infection in Anophelesmosquitoes

was present in all, but A. oblongoguttatum [36]. Moreover, the bacteriaWolbachia, which

impacts on vectors of arboviruses, Plasmodium infection and life history traits such as repro-

ductive fitness and adult lifespan [91–94] was found from all Diptera.

Conclusion

Habitat disturbance has been shown to increase the likelihood of disease outbreaks of zoonotic

(e.g., animal origin) infections through modifying the vector or host communities, or impact-

ing their life history characteristics. However, the epidemiological role of bacteria associated

with blood-feeding arthropods in relation to habitat disturbance is still poorly understood.

Here, we observed that variation in the bacterial communities across a diverse array of hema-

tophagous arthropods is likely to be explained by host phylogenetic relatedness, while intraspe-

cific changes in community composition and prevalence are influenced by habitat quality. We

found that the proportions of known disease-causing agents in infected arthropod species

were comparable across sampling areas with different levels of habitat disturbance. However,

further work is needed to determine whether the changes to the bacterial community with

habitat disruption could influence disease transmission to humans. We argue further that

changes in the microbiome of disease vectors should be considered when assessing the impact

of habitat disturbance on disease transmission risk and emergence.
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