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 2 

Abstract 26 

 27 

Local adaptation is an important consideration when predicting arthropod-borne disease risk 28 

because it can impact on vector population fitness and persistence. However, the extent that vector 29 

populations are adapted to local environmental conditions and whether this can impact on species 30 

distributions generally remains unknown. Here we find that the geographic distribution of Ae. 31 

aegypti across Panama is rapidly changing as a consequence of the recent invasion by its ecological 32 

competitor, Aedes albopictus. Although Ae. albopictus has displaced Ae. aegypti in some areas, 33 

species coexist across many areas, raising the question: What biological and environmental factors 34 

permit population persistence?. Despite low population structure and high gene flow in Ae. aegypti 35 

across Panama, excepting the province of Bocas del Toro, we identify 128 candidate SNPs, clustered 36 

within 17 genes, which show a strong genetic signal of local adaptation. This putatively adaptive 37 

variation occurs across relatively fine geographic scales with the composition and frequency of 38 

candidate adaptive loci differing between populations in wet tropical environments along the 39 

Caribbean coast and the dry tropical conditions typical of the Pacific coast of Panama. Temperature 40 

and vegetation were important predictors of adaptive genomic variation in Ae. aegypti with 41 

potential areas of local adaptation occurring within the Caribbean region of Bocas del Toro, the 42 

Pacific coastal areas of Herrera and Panama City and the eastern Azuero Peninsula. Interestingly, 43 

several of these locations coincide with areas where Ae. aegypti and Ae. albopictus co-exist, 44 

suggesting that Ae. aegypti could have an adaptive edge under local environmental conditions that 45 

impacts on inter-specific competition with Ae. albopictus. Our results guide future experimental 46 

work by suggesting that locally adapted Ae. aegypti are able to persist on invasion by Ae. albopictus 47 

and, as a consequence, may fundamentally alter future arborviral disease risk and efforts to control 48 

mosquito populations.  49 

 50 

 51 
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 3 

Author Summary 52 

 53 

Local environmental adaptation of mosquito vectors can alter the landscape of arthropod-borne 54 

disease by impacting on life history traits that increase their relative fitness thus promoting 55 

population persistence. We have identified a number of genomic loci in Ae. aegypti from Panama 56 

that exhibit a signal of natural selection associated with variation in the environment. Loci with a 57 

signal of local adaptation are predominately partitioned between wet and dry tropical environments 58 

with variation largely impacted by temperature and vegetation indices. Local adaptation in tandem 59 

with changes in the geographic distribution of Ae. aegypti due to the recent invasion of its ecological 60 

competitor, Ae. albopictus, has the potential to alter the landscape of arborviral disease. 61 

 62 

Introduction 63 

 64 

The establishment and persistence of vectors within new geographic locations poses a serious threat 65 

from emerging and endemic arboviral diseases [1,2]. For example, shifts in the distribution of ticks 66 

and Culex mosquitoes are linked to the rise of West Nile Virus and tick-borne encephalitis viruses 67 

within North America [3–5]. In addition, the introduction of invasive Aedes mosquitoes has facilitated 68 

the recent spread of Zika and Chikungunya viruses throughout the Americas [6,7]. Although 69 

introduced vector populations are unlikely to be at their fitness optimum when first confronted with 70 

a new environment, local adaptation may play a large role in disease dynamics as vectors adapt to 71 

their environment, increase their relative fitness and acquire new traits, thus potentially increasing 72 

the threat of human arboviruses. However, local environmental adaptation has not yet been 73 

characterised for any Aedes mosquito. 74 

 75 
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The importance of adaptation for human disease is exemplified in Aedes aegypti’s evolution to human 76 

commensalism and the establishment of a number of arboviruses worldwide [8]. This mosquito has 77 

undergone behavioural and genetic changes in comparison to its ancestral African form, including the 78 

evolution of house-entering behaviour and a preference for human odour and blood-feeding [9–11]. 79 

The adaptation of Ae. aegypti to exploit human environments has allowed for the spread of zoonotic 80 

arboviral diseases from forest animals to humans and promoted invasiveness through human-assisted 81 

dispersal [8]. Another human commensal, Aedes albopictus, is similar to Ae. aegypti across many 82 

ecological axes. The tiger mosquito has expanded from Asia within the last ~40 years and is now also 83 

globally distributed [12]. In many locations, Ae. albopictus has displaced resident Ae. aegypti [13,14], 84 

but the factors that facilitate co-occurrence are still unclear [15]. Identifying the abiotic and biotic 85 

factors important in Aedes species interactions, particularly whether the two Aedes mosquitoes 86 

coexist is critical. These interactions are likely to fundamentally reshape the arboviral disease 87 

landscape worldwide. 88 

 89 

Here we characterize genome-wide variation in Ae. aegypti across Panama and use this data to 90 

explore the interplay between invasion history, the potential for local adaptation, and ecological 91 

change. Panama provides an ideal opportunity to begin to understand how these factors interact 92 

and, ultimately, affect the disease landscape by impacting on Aedes species distributions. Panama is 93 

a small country, measuring just 772 kilometres East to West and 185 km North to South, but 94 

provides a wealth of contrasting climatic conditions and discrete environments. This is largely owing 95 

to its situation as a narrow isthmus flanked by the Caribbean Sea and Pacific Ocean as well as the 96 

Cordillera Central mountain range, which acts as a North-South divide. Panama is also a hub of 97 

international shipping trade, providing an important route of Aedes mosquito invasion into the 98 

Americas. Panama’s worldwide connections have potentially facilitated multiple introductions of the 99 

invasive Ae. aegypti mosquito dating back to the 18th century in association with the global shipping 100 

trade [8,16,17]. In addition, the Pan-American highway bisects the country, stretches almost 48,000 101 
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km throughout mainland America and provides important conduit for human-assisted dispersal of 102 

Aedes mosquitoes [13,18]. 103 

 104 

We first investigate how genomic variation in Ae. aegypti is distributed across Panama. Secondly,  105 

we evaluate the historical and current geographic distributions of both this mosquito and Ae. 106 

albopictus. Aedes albopictus was first documented in Panama in 2002, providing the opportunity to 107 

study how the interactions between the two species play out across a heterogeneous landscape. 108 

Finally, we investigate whether local environmental adaptation could play a role in Aedes population 109 

dynamics by identifying loci with a genomic signal of local adaptation that are associated with 110 

discrete environmental conditions. These genomic regions might allow Ae. aegypti populations to 111 

persist in competition with invading Ae. albopictus. How this scenario plays out in Panama will 112 

provide insight into global species interactions and the spatial heterogeneity of viral transmission. 113 

 114 

Results 115 

 116 

Characterisation of sequence variation in Ae. aegypti. We processed 70 Ae. aegypti individuals with 117 

hybridisation capture-based enrichment from 14 localities widespread across Panama. An average 118 

number of 27,351,514 reads were mapped to the genome for each individual with 62 % of these 119 

targeted to the designed capture regions. The mean coverage depth per individual was 120 

approximately 74X. After applying stringent quality filters, 371,307 SNP’s were identified throughout 121 

all captured regions for downstream analyses. 122 

 123 

Global and local population structure of Ae. aegypti: Our large SNP dataset allowed us to examine 124 

population structure across both global and local scales. Comparison of global population structure 125 

was achieved by comparing a subset of 2,630 of our SNP’s from Panama that were shared with a 126 

previously acquired Ae. aegypti SNP dataset from 26 other countries worldwide [19–23]. 127 
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FastStructure analysis revealed that the number of model components and model maximum 128 

likelihood were maximised by assigning each individual to between K=4-6 populations (S1 Fig). 129 

Similar to that reported previously, we found that the new world variation is composed of an 130 

admixture of populations distinct from African and Asian sources at higher values of K [19,20] (S1 131 

Fig). Individuals from Panama, Costa Rica, Colombia, the Caribbean islands and populations from 132 

Arizona and Texas in South western USA were consistently composed of a similar composition 133 

throughout each possible value of K (S1 Fig). Thus, Ae. aegypti from Panama were genetically similar 134 

to those found throughout the Americas, consistent with a strong geographic component to the 135 

distribution of genetic variation across the world [24]. 136 

 137 

Within Panama, the much larger dataset including all 371,307 SNP’s, highlighted significant 138 

population structure. There were two major genomic clusters (Fig 1B & 1C) that distinguished 139 

individuals from Bocas del Toro province in the western Caribbean region compared to individuals 140 

from all other regions across Panama, revealed on both FastStructure and PCA analysis of all SNP’s. 141 

In addition, Ae. aegypti from the eastern Azuero Peninsula also appeared somewhat genetically 142 

discrete (Fig 1C). All areas of Panama, including sampling locations on the Azuero Peninsula had 143 

similar levels of heterozygosity and therefore the population differences we observed are not 144 

expected to result from a recent population bottleneck or from insecticide spraying treatment, 145 

which is irregularly applied during epidemics to target adults only within the urban areas of Panama 146 

(Fig 1B). 147 

 148 

The geographical distribution of Ae. aegypti in response to invasion by Ae. albopictus. To 149 

understand how the recent introduction of Ae. albopictus has shaped populations of Ae. aegypti 150 

across Panama over the last decade, we coupled historical surveys of mosquito populations with 151 

intensive sampling of focal populations over the last three years. Over the sampling period, there 152 

has been significant changes in the geographic distribution of Ae. aegypti (Fig 2). Analysis of all 153 
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occurrence data throughout all years revealed that the presence of Ae. aegypti is positively and 154 

significantly associated with the presence of Ae. albopictus (GLM, Z = 18.93, d.f = 7390, P = 0.000), 155 

reflecting the ecological similarity of the two species and the continued expansion of Ae. albopictus 156 

throughout much of Ae. aegypti’s historical range. Although both species now co-exist in many areas 157 

throughout Panama, areas in the wet and humid western Azuero Peninsula, rural Chiriquí, Veraguas 158 

and the province of Panamá outside of Panama City (Gamboa and Chilibre), were solely inhabited by 159 

Ae. albopictus. This includes regions, from which Ae. aegypti was previously documented by the 160 

health authorities, confirming that Ae. albopictus has indeed replaced Ae. aegypti in these areas. The 161 

replacement of Ae. aegypti by Ae. albopictus was further supported by a general decrease in the 162 

proportion of positive sampling sites. This proportion has decreased for Ae. aegypti since 2005 from 163 

~50 % to ~20 %, while the presence of Ae. albopictus has increased from 0 to ~65 % (S2 Fig). Ae. 164 

aegypti continued to be found in high abundance in Bocas del Toro and Darién, where Ae. albopictus 165 

has only recently arrived (Darién) or has not yet been documented (Bocas del Toro).  166 

 167 

Genomic evidence for local adaptation in Ae. aegypti in response to environmental 168 

heterogeneity across Panama. The spatial environmental heterogeneity of Panama coupled with 169 

the recent population changes associated with the introduction of Ae. albopictus provides a 170 

framework to ask if there was any evidence that local adaption of Ae. aegypti might allow 171 

population persistence. If so, we would expect populations of Ae. aegypti to harbour genomic loci 172 

with a signal of selection that are correlated to the local environmental conditions. These loci are 173 

expected to be present in regions of Aedes co-existence. 174 

 175 

As a first step, we applied redundancy analysis (RDA) to jointly identify candidate outlier loci and to 176 

assess how candidate variation was partitioned among the different environmental variables. In this 177 

analysis, we tested a number of environmental variables including Normalized Difference Vegetation 178 

Index (NDVI), average rainfall, average humidity, average minimum and maximum temperature, and 179 
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human population density. RDA identified 1,154 candidate SNP’s with a genomic signal of local 180 

adaptation, which we used to visualise putatively adaptive variation on ordination plots. Overall, 181 

there was a partitioning of alleles dependant on dry tropical and wet tropical conditions. For 182 

example, the position of sampled individuals on the RDA ordination plots, in relation to the depicted 183 

environmental variables, revealed that the candidate genotypes of Ae. aegypti from the wet tropical 184 

regions of Almirante and Changuinola in Bocas del Toro province were positively associated with 185 

humidity and average rainfall. Those from the wet tropical region of Chiriquí Grande in Bocas del 186 

Toro were also positively associated with increasing NDVI vegetation index and negatively associated 187 

with higher temperatures (Fig 3A). In comparison, the candidate genotypes of individuals from dry 188 

tropical regions of Panamá province (i.e., Princesa Mía, Lluvia de Oro, Nuevo Chorrillo), Los Santos 189 

(i.e., La Villa de Los Santos, Pedasí), Darién (i.e., Metetí) and David in Chiriquí province were 190 

somewhat positively influenced by both temperature variables and negatively associated with wet 191 

and vegetated conditions. Putatively adaptive variation in individuals from the province of Colón 192 

(i.e., Sabanitas and Portobelo), locations which receive high rainfall but higher temperatures and 193 

lower vegetation cover than in Bocas del Toro province, were associated with intermediate 194 

temperature and vegetation conditions.  195 

 196 

RDA is robust in detecting adaptive processes that result from weak, multilocus effects across a 197 

range of demographic scenarios and sampling designs [25]. However, a proportion of the 1,154 198 

candidate loci identified through this single analysis were likely false positives. Thus, rather than 199 

reflecting local adaptation, the strongly skewed frequency differences could be reflective of 200 

demographic processes such as hierarchical population structure, isolation by distance, allele surfing 201 

on range expansion and background selection, as well as, coincidental associations of allele 202 

frequencies to environmental variation or even covariance to other environmental factors not 203 

included in the analysis [26]. To further refine our identification of putatively adaptive loci, we 204 

identified candidates using two additional methods, PCAdapt and Latent Factor Mixed Model 205 
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analysis (LFMM). Both are considered less sensitive to confounding demography due to their ability 206 

to account for population structure or unobserved spatial autocorrelation in the data [27]. The three 207 

methods identified different numbers of putatively adaptive loci. For example, compared to the 208 

1,154 outlier SNP’s identified by RDA, PCAdapt identified 352 SNP’s (S3 Fig), whereas LFMM analysis 209 

identified 3,426 outlier SNP’s with a signature of selection widespread across the genome and 210 

associated with the environment respectively (S4 Fig).  211 

 212 

Across all three methods there were 128 SNP’s consistently identified as outliers, providing greater 213 

confidence that these loci are located in or close to genomic regions possibly involved in local 214 

adaptation. These candidate SNPs fell into 15 distinct clusters, suggesting that linkage disequilibrium 215 

was driving some of the observed patterns (S5 Fig). The 128 SNPs fell into 17 genes, 11 of which are 216 

annotated as involved in structural functions, enzyme activity and metabolism (S1 Table). None of 217 

these genes are known to be involved in the development of insecticide resistance in populations of 218 

Aedes mosquitoes.  219 

 220 

We further narrowed down which of the environmental variables contributed most to the 221 

partitioning of genomic variation using a combination of Generalised Dissimilarity Modelling (GDM) 222 

and Gradient Forests (GF) analyses. Both approaches allowed us to visualize the allelic turnover of 223 

these putatively adaptive loci in relation to each environmental variable. The environmental 224 

variables that contributed the greatest variance to both GDM and GF models on analysis of the 128 225 

candidate loci were minimum and maximum temperature (S2 Table, S6 Fig). GDM analysis revealed 226 

that an increase in average minimum temperature accompanied a large change in putatively 227 

adaptive allele frequencies, visualised as a smooth curve accumulating in a steeper incline at the 228 

higher temperature range (Fig 3B). In comparison, GF turnover plots show a steeper incline at the 229 

mid-range for both average minimum and maximum temperature (S7 & S8 Fig). GDM analysis also 230 

revealed a distinct frequency change in putatively adaptive alleles with increasing NDVI vegetation 231 
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index, although the change in allele frequency was relatively minor compared to that of minimum 232 

temperature (Fig 3B). In comparison, a low to negligible difference in allele frequency was observed 233 

in association with average rainfall, average humidity and human population density. Therefore, the 234 

variation in putatively adaptive allele frequencies between populations from dry tropical and wet 235 

tropical environments of Panama appears largely driven by differences in temperature and NDVI 236 

vegetation index. 237 

 238 

The geographic distribution of candidate adaptive alleles in relation to the present 239 

distribution of Ae. albopictus. Across our 128 candidate SNP’s, we used GDM and GF analysis to 240 

visualise the change in frequencies across Panama, and therefore the geographical landscape 241 

features which increase or decrease the genomic signature of local adaptation in relation to the 242 

environment. GDM analysis presented a smoother turnover in the geographical distribution of 243 

putatively adaptive loci than that of putatively neutral loci as indicated by a smoother transition in 244 

the colour palette between proximal geographic locations (Fig 4A & 4B). For example, there was 245 

similarity in the colouring and therefore allele composition between wet tropical regions along the 246 

Caribbean coast (i.e., the mainland/islands of Bocas del Toro, Chiriquí, and both the inland and 247 

Caribbean coastal regions stretching from Bocas del Toro through Veraguas to Colón). Similarly, 248 

there was greater continuity between dry tropical areas including David in Chiriquí, the eastern 249 

Azuero Peninsula (i.e., La Villa de Los Santos and Pedasí), the Pacific coastal regions stretching from 250 

the Azuero Peninsula through Coclé to Panamá, and the Darién (i.e., Metetí), indicating that these 251 

environments share putatively adaptive alleles. Patterns in the data were less distinct for GF analysis 252 

but the geographical distribution of putatively adaptive variation agreed with the GDM analysis in 253 

that there was a continuity in the allele composition between the eastern Azuero Peninsula and dry 254 

tropical Pacific coastal regions, distinct from the wet tropical regions along the Caribbean coast (S9 255 

Fig). 256 

 257 
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Allele frequency turnover as predicted under neutral conditions and a scenario of local adaptation 258 

involving the candidate loci were compared across geographical space to identify locations that 259 

show the greatest disparity. These reflected the populations within Panama expected to be 260 

experiencing a strong genomic signal of local adaptation. Their comparison revealed multiple 261 

patches of potential local adaptation widespread across Panama, with a palpable patch occurring in 262 

the Azuero Peninsula, as indicated by a high distance between the patterns of predicted 263 

compositional allele frequency turnover (Fig 4C). A genomic signal of local adaptation was not 264 

identified in the region of Bocas del Toro. Since this region has a strong population structure and 265 

distinct climate within Panama, it is likely that the co-correlation of population structure and 266 

environmental variation across our sampling design hindered the inference of possible local 267 

adaptation in this case. This conclusion was supported by FastStructure analysis of the 128 268 

putatively adaptive loci, which revealed that Ae. aegypti from the wet tropical region Bocas del Toro 269 

has a distinct allele composition composed of alleles assigned to a distinct composition of K 270 

populations, including unique alleles in addition to those shared broadly across the dry tropical 271 

regions of Panama (S10 Fig). Although the Talamanca mountain range was documented as a natural 272 

geographical barrier to dispersal across the region of Bocas del Toro for some Anopheles mosquitoes 273 

[28], this was not expected to hinder gene flow in Ae. aegypti, since human-assisted movement of 274 

this mosquito occurs via the local transport network [18]. Partitioning of the genomic data into 6=K 275 

populations revealed that Sabanitas on the Caribbean coast, which is subject to intermediate climate 276 

conditions, shared some of the distinct alleles present in Bocas del Toro. Moreover, individuals from 277 

the Azuero Peninsula, the driest and least vegetated region of Panama, were also somewhat distinct 278 

from other sampled regions since they had reduced levels of admixture.  279 

 280 

Comparison of the geographical distribution of putatively locally adapted Ae. aegypti as revealed by 281 

GDM analysis and the species distribution data revealed that both Ae. aegypti and Ae. albopictus 282 

tended to co-occur in regions where Ae. aegypti have divergent candidate loci, despite evidence for 283 
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species replacement elsewhere (Fig 5). Notably long-term co-existence was documented with the 284 

Pacific regions of Panama City, Coclé, the eastern Azuero Peninsula and potentially David in Pacific 285 

Chiriquí, where patches of local adaptation in Ae. aegypti were identified. 286 

 287 

Discussion 288 

 289 

We combined genomic and ecological data to investigate whether Ae. aegypti have a signal of local 290 

adaptation to the environment, and to investigate whether this variation could influence species 291 

persistence on invasion by the recently introduced competitor Ae. albopictus. We first documented 292 

how fine-scale genomic variation within Ae. aegypti is distributed across a complex environment 293 

[11]. On a regional scale, Panamanian populations of Ae. aegypti are genetically similar to other 294 

Central and Caribbean American populations highlighting high dispersal potential and recent gene 295 

flow in this invasive species; however, this similarity belies a more complex local genomic 296 

architecture. Across Panama, genomic variation was not structured randomly, with the isolated 297 

Bocas del Toro region showing significant overall population differentiation. Across the rest of 298 

Panama, populations are more homogeneous suggesting high levels of gene flow, likely facilitated by 299 

the dispersal of Aedes mosquitoes in used tyres that are traded along the Pan-American highway 300 

[18]. Nonetheless, a subset of genomic variation was differentially distributed with evidence of 301 

localised adaptation across a relatively small number of SNPs and over a relatively fine geographical 302 

scale. Genomic variation in these SNPs was strongly correlated with temperature and NDVI 303 

vegetation index. Both these abiotic variables were previously identified as important in predicting 304 

large-scale Aedes distribution patterns [12]. Temperature is important for egg laying, development 305 

and survival of Ae. aegypti in larval habitats [29] and likely to promote selection to thermal tolerance 306 

at the adult stage to resist diurnal and inter-seasonal variation [30]. Vegetation is considered an 307 

important variable that contributes to oviposition cues [31], feeding dynamics [32] and microhabitat 308 

characteristics such as local moisture supply and shade [33,34]. Although correlational, the genomic 309 
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patterns raise an important question: Is population persistence in the face of an ongoing invasion by 310 

Ae. albopictus the result of local adaptation? 311 

 312 

The possibility of climatically adapted populations of Ae. aegypti is not without precedence. Data on 313 

a wide range of organisms with varying dispersal abilities [35–41] demonstrate that even well-314 

connected populations can adapt to environmental differences and habitat heterogeneity across 315 

narrow spatial scales. Similar to other landscape genomics studies on plants [42–44], insects [45] 316 

and vertebrates [46], we have found a signal of local environmental adaptation across a small 317 

number of loci. The inability to identify more putative regions under selection may be the result of 318 

the analytical difficulties weak multilocus signatures from the genomic differentiation introduced by 319 

genetic drift and demography [25,47]. However, selection on just a few loci with large effects is 320 

expected when migration is high since large effect loci are better able to resist the homogenising 321 

effects of gene flow [48]. These few regions are expected to have a strong impact on fitness in one 322 

environment over the other because the allele with the highest fitness is expected to spread to all 323 

populations if this condition is not met [48]. 324 

 325 

The pattern of recent population distribution change in Ae. aegypti in response to the introduction 326 

of Ae. albopictus was also consistent with local adaption. Similar to studies from the South Eastern 327 

USA and Bermuda [49–54], we have found that species co-occurrence is condition dependant, with 328 

the long-term persistence of Ae. aegypti occurring throughout many areas despite invasion by Ae. 329 

albopictus 7 to 15 years ago. Previous studies have suggested Ae. aegypti is able to persist in dry 330 

climate conditions and/or urban environments because they are better adapted [15 and refs within]. 331 

The eggs of Ae. aegypti are more tolerant to higher temperatures and desiccation in comparison to 332 

the eggs of Ae. albopictus, which are able to survive lower temperatures through diapause [15,55]. 333 

Consistent with the prediction that local environmental adaptation contributes to Ae. aegypti 334 

persistence, we found putatively adaptive loci within the dry tropical Pacific regions of Chiriquí 335 
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(David), Coclé, the eastern Azuero Peninsula and provincial Panamá where both species co-occur. 336 

There was also genetic evidence for local adaptation in the isolated wet tropical region of Bocas del 337 

Toro and Costa Abajo near Colon, but whether this variation will allow Ae. aegypti to resist invasion 338 

by Ae. albopictus is unknown, given that Ae. albopictus was only recorded in Costa Abajo in 2018 and 339 

has not yet reached Bocas del Toro. Alternatively, the present patterns of species co-existence could 340 

simply reflect the abilities of Aedes species to exploit a different ecological niche without involving 341 

local environmental adaptation. Nonetheless, this doesn’t reconcile the fact that Ae. aegypti is no 342 

longer found in many areas where candidate adaptive alleles were not detected. Our findings 343 

provide us with clear testable hypotheses moving forward. For example, if the genomic regions we 344 

identified are adaptive, then we expect genotype specific survival under different environmental 345 

conditions, which can be tested in a common garden with reciprocal transplant experiment in the 346 

presence of an ecological competitor.  347 

 348 

The presence of locally adapted populations of Ae. aegypti could have a significant impact on the 349 

future arboviral disease landscape. Climate variables, most notably precipitation and temperature 350 

associated with altitudinal and latitudinal clines, are able to drive population differentiation in both 351 

Anopheles mosquitoes and Drosophila flies [56–59]. In the former, the Anopheles gambiae species 352 

complex is hypothesised to have radiated through ecological speciation driven by adaptation to 353 

aridity and in response to larval habitat competition. This has led to a series of ecotypes with semi-354 

permeable species boundaries [60]. The resulting differences among ecotypes in anthropophily and 355 

the adult resting behaviour has a significant impact on malaria transmission risk [61]. Thus, at the 356 

most basic level, differentially adapted population variants of Ae. aegypti across Panama, could have 357 

different abilities to vector arboviral disease [62–67]. In addition, environmental adaptation would 358 

need to be considered in spatially predictive models. Currently, species geographic distribution or 359 

disease prediction models incorporate a set of environmental parameters coupled with a predicted 360 

outcome on mosquito biology and abundance without considering adaptive response [68,69]. 361 
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Assuming that the whole population will respond to environmental precursors as a homogenous unit 362 

is erroneous when local adaptation is present and considering adaptability as a parameter, in 363 

combination with the environmental response, will improve the accuracy of future projections 364 

[12,70]. Furthermore, the presence of locally adapted populations threatens the efficiency of gene 365 

drive systems aimed at promoting disease resistance within mosquito populations. This is because 366 

environmental differences between sites, as well as physical geographical barriers, will restrict 367 

mosquito dispersal and therefore limit the spread of beneficial alleles or inherited bacteria [71]. 368 

However, if locally adaptive alleles are well-characterised, this knowledge could also potentially be 369 

exploited. A more tailored approach could improve gene drive efficiency, since locally adapted 370 

individuals are theoretically more likely to survive to pass on the intended benefit to the next 371 

generation. 372 

 373 

If local environmental adaptation is proven to influence Aedes co-occurrence, then this could 374 

facilitate the emergence of sylvatic arboviral disease. Ae. albopictus is an opportunistic feeder, able 375 

to utilise a wide range of peri-domestic habitats outside of its native range [72,73] and the species 376 

could act as an efficient bridge vector for emergent zoonotic diseases from the forest [73]. The 377 

addition of the specialised commensal Ae. aegypti, provides the opportunity for any emergent 378 

epidemic to spread and be maintained within the urban population [8–11]. This scenario may have 379 

happened recently, where yellow fever virus re-emerged from forest reservoirs in Brazil [74]. In this 380 

case, the re-emergence was a function of both ecological changes and vaccination frequency. Unlike 381 

yellow fever virus, there is no vaccination against dengue, Zika, or chikungunya, reinforcing the role 382 

that ecological changes will likely play in future epidemics. 383 

 384 

Conclusion: The identification of small number of putatively adaptive genomic intervals provides 385 

exceptional experimental opportunities to determine 1) If these regions are in fact under selection, 386 

2) How selection might be acting if our hypothesis is true. Defining species fitness in association with 387 
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our candidate loci will allow us to untangle the interplay between genomic process, the 388 

environment, species competition and how these resolve the spatial distribution and abundance of 389 

medically important Ae. aegypti. Advances will be used to improve the accuracy of disease 390 

prediction models and characterise the genomic basis of adaptations with the capacity to alter the 391 

epidemiological landscape. 392 

 393 

Materials and Methods 394 

 395 

Mosquito Sampling Aedes mosquitoes were collected through active surveillance and oviposition 396 

traps placed across 35 settlements and nine provinces of Panama from 2016 and 2018 (S3 Table). 397 

Immature stages of Aedes from each trap were reared to adulthood as separate collections in the 398 

laboratory, identified using the morphological key of Rueda et al. [75] and stored in absolute ethanol 399 

at -20°C.  400 

 401 

Genomics data. DNA was extracted from 70 Ae. aegypti (Fig 1A), representing populations subject to 402 

different environmental conditions using a modified phenol chloroform method [76]. To identify 403 

putative regions involved in the local adaption of Ae. aegypti, 26.74 Mb of the AaeL3 exome were 404 

targeted for capture. For each sample, 100 ng DNA was mechanically sheared to fragment sizes of  ~ 405 

350-500 base pairs and processed to add Illumina adapters using the Kapa Hyperprep kit. Amplified 406 

libraries were assessed on a Bioanalyser and Qubit before 24 uniquely barcoded individuals each 407 

were pooled to a combined mass of 1 μg to create three libraries of 24 individuals for hybridization. 408 

Sequence capture of exonic regions was performed on each pool according to the NimbleGen 409 

SeqCap EZ HyperCap workflow and using custom probes designed by Roche for the regions we 410 

specified (S1 Dataset).  411 

 412 
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Low quality base calls (<20) and Illumina adapters were trimmed from sequence ends with 413 

TrimGalore [77], before alignment to the Ae. aegypti AaeL5 reference genome with Burrows-414 

Wheeler aligner [78]. Read duplicates were removed with BamUtil. Sequence reads were processed 415 

according to the GATK best practise recommendations, trained with a hard-filtered subset of SNPs 416 

using online recommendations (https://gatkforums.broadinstitute.org/gatk/discussion/2806/howto-417 

apply-hard-filters-to-a-call-set). SNPs were called with a heterozygosity prior 0.0014 synonymous to 418 

previously reported values of theta [24]. Filters applied to the resulting SNP dataset included a 419 

minimum quality of 30, minimum depth of 30, minimum mean depth of 20, maximum 95 % missing 420 

data across individuals and a minor allele frequency ≥ 0.01. Indels were additionally removed to 421 

reduce uncertainty in true variable sites by poor alignment to the reference genome. 422 

 423 

Environmental Data. Climate variables including average rainfall, average humidity, average 424 

minimum and maximum temperature difference, average minimum temperature and average 425 

maximum temperature were obtained for each collection site from interpolated raster layers 426 

composed of values reported by Empresa de Transmisión Eléctrica Panameña (ETESA). All available 427 

data points from 2010 to 2017 representing 50-60 meteorological stations across Panama were 428 

averaged. NDVI vegetation indexes for Panama were obtained from MODIS Vegetation Indices 16-429 

day L3 Global 250m products (NASA, USA) with values averaged over all available images from 2010 430 

to 2017. Human population density values were obtained from Instituto Nacional de Estadística y 431 

Censo 2010. Raster layers for Generalised Dissimilarity Models and Gradient Forest analyses were 432 

created for each variable by inverse distance interpolation across the extent of Panama to a 433 

resolution of 0.05 pixels in QGIS version 2.18.15 [79].  434 

 435 

The collinearity and covariance of the environmental data was assessed the R Stats package [80]. 436 

One variable, average minimum and maximum temperature difference was removed from analysis 437 

because it was highly correlated with the other temperature variables (>0.8 correlation coefficient). 438 
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All other variable comparisons had a correlation coefficient below 0.7 and were retained for analysis 439 

(S4 Table).  440 

 441 

Analysis of population structure. FastStructure was also applied to all loci to infer the ancestry 442 

proportions of K modelled populations [81]. The optimal model complexity (K*e) was chosen to be 443 

two populations using the python script chooseK.py and confirmed by a PCA of all loci performed 444 

with the R package PCAdapt [82](see Analysis of local environmental adaptation below). 445 

FastStructure analysis with a logistic prior was also applied to 2,630 SNP’s shared with a worldwide 446 

SNP dataset representing Ae. aegypti from 26 different countries [19–23]. 447 

 448 

Species distribution analysis. Historical data on species distributions from 2005 to 2017 was 449 

obtained from the Panamanian Ministry of Health (MINSA). This data was obtained through active 450 

surveillance of settlements regardless of time of year. A binomial Generalised Linear Model was 451 

performed to test for an association between the presence and absence of Ae. aegypti with the 452 

presence and absence of Ae. albopictus using the species occurrence data obtained from both 453 

MINSA and our own sampling using the Stats package in R [80]. The proportion of sampling sites 454 

positive for Ae. aegypti and Ae. albopictus presence from 2005 through 2018 were calculated by 455 

combining our mosquito surveillance data with that obtained from MINSA. Maps of the species 456 

distribution of Ae. aegypti and Ae. albopictus were produced in QGIS [79]. 457 

 458 

Analysis of local environmental adaptation. To identify loci with a signal of selection differentiated 459 

across regional environmental conditions, three methods with different underlying algorithms and 460 

assumptions were applied. Two EAA approaches, redundancy analysis (RDA) and latent factor mixed 461 

models (LFMM) were implemented to identify loci associated with environmental predictors. RDA 462 

uses multivariate regression to detect genomic variation across environmental predictors as 463 

expected from a multilocus signature of selection [25]. In comparison, LFMM is a univariate 464 
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approach which models background variation using latent factors, while simultaneously correlating 465 

the observed genotype frequencies of individuals to each environmental variable [83]. Before 466 

implementation of RDA, missing genotype values were imputed as the most common across all 467 

individuals. Loci which are strongly correlated to environmental predictors were then identified 468 

through multivariate linear regression of the genomic data with the environmental variables 469 

followed by constrained ordination of the fitted values as implemented with the RDA function in the 470 

R package Vegan [84]. Multi collinearity of the data was verified to be low as indicated by genomic 471 

inflation factors ranging from 1.31-5.80. Candidate loci were then identified as those which 472 

contribute most to the significant axes as determined by F statistics [85]. To account for population 473 

structure, we applied two latent factors to our LFMM analysis based on the PCA and scree plots of 474 

proportion of explained variance produced with PCAdapt (see below). As per recommendations to 475 

improve power, we filtered our data before analysis to include only sites with an MAF > 5 % and 476 

analysed our data with five separate LFMM runs, each with 20,000 cycles after an initial burn-in 477 

period of 10,000 cycles. Median Z-scores were calculated from the five runs and Bonferroni 478 

corrected for multiple tests, before loci significantly correlated with environmental variables were 479 

identified based on a false discovery rate of 10 % using the Benjamini-Hochberg procedure outlined 480 

in the program documentation. Visualisation of the Bonferroni adjusted probability values for the 481 

loci correlated with each environmental factor revealed that the majority of probability values were 482 

at a flat distribution while those correlated with environmental variables were within a peak close to 483 

0, indicating that confounding factors were under control. In addition to the two EAA analyses, 484 

PCAdapt was applied to identify loci putatively under selection pressure because they deviate from 485 

the typical distribution of the test statistic Z [82]. Two K populations were chosen to account for 486 

neutral population structure in the data based on scree plots of the proportion of explained variance 487 

and visual inspection of PCA and STRUCTURE plots which revealed that populations from the region 488 

of Bocas del Toro form a distinct genomic grouping (Fig 1, S11 Fig).  489 

 490 
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Distribution of candidate loci across geographical space. Both putatively neutral and adaptive 491 

genomic variation was visualised across geographic space using Generalised Dissimilarity Modelling 492 

(GDM) and Gradient Forests (GF) analysis [86]. GDM is a regression-based approach which maps 493 

allelic turnover using non-linear functions of environmental distance in relation to FST genetic 494 

distance. In comparison, GF uses a machine learning regression tree approach. Through subsetting 495 

the genomic and environmental data, the algorithm determines the degree of change for each allele 496 

along an environmental gradient and calculates the resulting split importance. Allelic turnover was 497 

investigated for both a set of reference SNP’s, not expected to be under selective pressure, as well 498 

as the loci putatively involved in local adaptation as jointly identified by LFMM, PCAdapt analysis and 499 

RDA. SNP’s representative of neutral variation included those not identified as a candidate outlier by 500 

any of the three methods. So as to reduce the dataset and avoid inclusion of strongly linked loci, 501 

SNP’s were thinned by a distance of 10 KB, an appropriate cut-off as indicated by the calculation of 502 

R2 linkage disequilibrium values for this dataset (S12 Fig).  503 

 504 

To perform GDM analysis, the R program StAMPP [87] was used to generate the input FST matrixes 505 

and BBmisc [88] used to rescale the distances between 0 and 1. Environmental and genetic distance 506 

data were converted to GDM format and analysis performed using the R package GDM [89]. GF 507 

analysis [90] was implemented on a matrix of minor allele frequencies for each SNP for both the 508 

reference and candidate datasets, obtained through VCFtools [91]. Both SNP datasets only included 509 

loci present in at least 11 of 14 populations to ensure robust regression. The model was fitted with 510 

2,000 regression trees, a correlation threshold of 0.5 and variable importance computed by 511 

conditional permutation with a distribution maximum of 1.37. Both analyses included Moran’s 512 

eigenvector map (MEM) variables which are weightings derived from the geographic coordinates of 513 

sampling locations used to model unmeasured environmental variation and geographic distance 514 

analogous to latent factors [86]. To visualise the patterns in allele variation across space, PCA was 515 

used to reduce the variability into three factors. The difference in genomic composition was mapped 516 
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across the landscape of Panama by assigning the three centred principle components to RGB 517 

colours; similar genomic composition across space is indicated by a similar colour shade. The 518 

difference in allele turnover for the reference and candidate dataset was characterised to explore 519 

whether allelic turnover was greater than predicted under neutral expectations. Exploration was 520 

achieved by comparing and visualising the compositional turnover of allele frequencies for both 521 

reference and candidate SNP dataset across geographical space using a Procrustes superimposition 522 

on the PCA ordinations.  523 
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 834 

 835 

Fig 1. Strong local population structure within the context of regional homogeneity and global 836 
population structure: (A) FastStructure plot of K=6 populations comparing 2,630 SNP’s in individuals 837 
of Ae. aegypti from Bocas del Toro and the rest of Panama to genetically similar populations 838 
originating from South-western USA, Caribbean islands, Costa Rica and Columbia. FastStructure 839 
assigns each individual to one or more K populations, as indicated by its colour. Genetically similar 840 
populations share the same colour or similar admixture composition on comparison. (B) Admixture 841 
proportions of K=2 populations in relation to sampling locations and population heterozygosity Hs of 842 
Ae. aegypti across Panama as determined by FastStructure for 371,307 SNP’s. (C) PCA of all Ae. 843 
aegypti SNP’s grouped by region.  844 
 845 
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 846 

Fig 2.  The species replacement and co-occurrence of Aedes species is condition dependent: (A) 847 
The presence of Ae. aegypti (orange), Ae. albopictus (blue) and species co-occurrence (yellow) 848 
recorded by extensive sampling with both active surveillance and oviposition traps during the wet 849 
season months from 2016 through to 2018 in comparison to (B) Species occurrence data recorded 850 
from 2005 through 2017 through active surveillance by the Ministry of Health in Panama.  851 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 6, 2020. . https://doi.org/10.1101/744607doi: bioRxiv preprint 

https://doi.org/10.1101/744607


 32 

 852 

Fig 3. Putative adaptive variation in Ae. aegypti is partitioned between wet and dry tropical 853 
environments and associated with temperature and vegetation indices: (A) Ordination triplot of 854 
the first two constrained ordination axes of the redundancy analysis representing SNP’s either 855 
positively or negatively associated with the environmental variables as depicted by the position of 856 
the arrows. Ae. aegypti from the wettest region (blue) and driest region (red) are highlighted. (B) 857 
Compositional turnover splines for GDM analysis for the reference loci that are putatively neutral 858 
(dashed line) and the 128 candidate loci with a signal of local adaptation (black line) in association 859 
with NDVI vegetation index (NDVI), average minimum temperature (MinT), average maximum 860 
temperature (MaxT), average humidity (Humidity), average rainfall (Rain) and human population 861 
density (HPopD). A change in allele frequency relative to the reference loci is seen in the putatively 862 
adaptive alleles with increasing values of NDVI and MinT, marked in bold with an asterix. 863 
 864 
 865 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 6, 2020. . https://doi.org/10.1101/744607doi: bioRxiv preprint 

https://doi.org/10.1101/744607


 33 

 866 

Fig 4. Patches of local adaptation are revealed on comparison of putative neutral and adaptive 867 
variation across geographical space: RGB maps of compositional allele frequency turner over across 868 
geographical space based on GDM analysis of (A) putatively neutral loci, (B) the 128 candidate loci 869 
with a signal of local adaptation and (C) the difference in allele compositional turnover between the 870 
putatively neutral reference loci and putatively adaptive candidate dataset using a Procrustes 871 
superimposition on the PCA ordinations. On maps (A) and (B), the dissimilarity between allele 872 
composition is depicted by an increasing divergent colour spectrum. Locations with a similar allele 873 
composition are a similar colour. On map (C), the scale represents the distance between the allele 874 
compositional turnover of the reference and candidate SNP datasets, with higher distances 875 
indicating areas that are potentially experiencing local adaptation.  876 
 877 
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 878 

Fig 5. Putatively adaptive loci are predicted in Ae. aegypti populations within areas of species co-879 
existence. Corregimientos with Aedes co-occurrence (dashed areas) are shown based on the most 880 
recent species distributions recorded during this study in 2018 and in other sampled regions by 881 
MINSA in 2017. The co-occurrence data is overlaid onto the compositional turnover of the reference 882 
and candidate SNP dataset from Figure 4., with values greater than 0.30 shown. Green coloured 883 
areas represent regions with a greater predicted distance between the allele composition of the 884 
reference and candidate datasets, indicating the potential presence of locally adapted Ae. aegypti. 885 
Corregimientos where only Ae. aegypti (blue) and Ae. albopictus (purple) were present are also 886 
indicated.  887 
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